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Abstract
Ecological niche models (ENMs) and species distribution models (SDMs) have been 
widely applied to various studies relevant to biogeography, conservation biology, 
and ecology. These modelling techniques seek to develop spatial maps for project-
ing, among others past, current, and future species distributions. Born in the field of 
terrestrial ecology, only in recent years have these models been applied to marine 
environmental issues, especially to improve the forecasting of the distribution of oc-
currences and capturing of fishery resources. This study aimed to present through bib-
liometric analysis the characteristics of articles related to the use of ENMs and SDMs 
in marine fishery resources considering three main points: (1) state of the art: number 
of articles over the years, journals, countries, collaborations, and focus of research; (2) 
characteristics linked to fishery resources: marine biogeographic realms, taxonomic 
groups, life phases, oceanographic zones, and behaviours; (3) characteristics linked to 
methods: type of method, type of biological and, environmental data. We provide a 
list of 378 articles (derived from 930 screened ones), the results, and a discussion of 
our findings, which represent a baseline for the current status (strengths, limits, and 
gaps) of the interface between ENMs/SDMs and fishery resources.

K E Y W O R D S
bibliometric analysis, bioclimatic envelope models, catch, ecological niche, habitat suitability 
models, scientific production

1  |  INTRODUC TION

Since the late 1990s, ecological niche models (ENMs) and species 
distribution models (SDMs) (among other terminologies, see Araújo 
& Peterson, 2012 and Guisan et al., 2013) have been widely applied 
in several studies relevant to biogeography, conservation biology, 
and ecology (Guisan et al.,  2013; Robinson et al.,  2011; Svenning 
et al.,  2011). Although ENMs and SDMs are often synonymous in 

the literature, both terminologies are conceptually different: ENM 
refers to some estimation of the multidimensional environmental 
niches (E) (in the realm of niches, not distributions) used to outline 
areas (G) appropriate in terms of abiotic conditions (GA), i.e. potential 
distribution of species (GP). SDM needs to estimate the fundamental 
niche (NF) – which allow some hypothesis of GA – and, assessment 
of dispersal ability or movement (M), resulting in an occupied distri-
butional area (GO) (GO = GA∩M) (Peterson & Soberón, 2012; Soberón 
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et al.,  2017; Soberón & Nakamura,  2009). Thus, ENM is correctly 
applied for current, future, and past potential distributional areas 
while SDMs are correctly applied exclusively for current distribu-
tion (Peterson & Soberón,  2012). However, both terms are many 
times applied interchangeably due to the similar algorithm, occur-
rence data, environmental variables, and capacity to produce maps 
(Peterson & Soberón,  2012) and for this reason will be called to-
gether as ENM/SDM from here on.

Correlative ENMs/SDMs are built using a modelling method that 
correlates known occurrence records of species observations (e.g., 
presence-only, presence-absence, abundance or biomass) and envi-
ronmental information (abiotic or biotic) (Elith & Leathwick, 2009) 
partially linked to limiting factors or niche of species. The correla-
tive ENMs/SDMs will generally identify some suite of environmen-
tal conditions that fall in between fundamental and realised niches, 
and the geographic area will be an intermediate between GP and 
GO (Peterson et al., 2015). The outputs of ENMs/SDMs have been 
used to predict the current and future potential distributions of 
invasive species (e.g., Barbosa, 2016; Cassemiro et al., 2018), iden-
tify priority areas for conservation (e.g., Lemes & Loyola,  2013; 
Nieto et al., 2017), infer the effects of global environmental change 
(e.g., climate change) on biodiversity (e.g., Gallardo et al.,  2018; 
Martin et al., 2013), discuss biogeographic patterns (e.g., Werneck 
et al., 2012), and guide field research to find new populations or re-
introductions (Chucholl, 2017), among others (see other applications 
in Peterson et al., 2011).

The growing use of ENMs/SDMs (Elith & Leathwick, 2009) re-
flects concerns about the effects of global environmental change on 
biodiversity, mainly anthropogenic climate change (Brotons, 2014), 
combined with the wide availability of open-access georefer-
enced species (e.g., Global Biodiversity Information Facility - GBIF, 
Distributed Information System for Biological Collections, and 
Ocean Biodiversity Information System - OBIS) and environmental 
databases (e.g., Bio-ORACLE, Assis et al., 2018; WorldClim, Fick & 
Hijmans, 2017; World Ocean Database, Levitus et al., 2013), meth-
ods (e.g., Merow et al., 2014; Martínez-Minaya et al., 2018; MaxEnt, 
Rangel & Loyola, 2012), software (e.g., R, Ahmed et al., 2015), and 
packages (e.g., R-INLA, Gómez-Rubio, 2020). Furthermore, numer-
ous studies have identified and quantified the sources of method-
ological uncertainties (e.g., type of methods, type of environmental 
data) in ENMs/SDMs (Beale & Lennon, 2012; Heikkinen et al., 2006; 
Rocchini et al.,  2011; Thibaud et al.,  2014), as well as conceptual 
problems (Peterson & Soberón, 2012; Soberón, 2007, 2010; Soberón 
& Nakamura, 2009).

Fishery resources (species important to fisheries) contribute to 
an important portion of total animal protein consumption world-
wide. For example, from a global perspective, the consumption rate 
increased by nearly double the annual growth of the world popula-
tion (3.1% vs. 1.6%) from 1961 to 2017, higher than that of all other 
animal protein foods (meat, dairy, milk) (FAO, 2020). This growth rate 
requires better knowledge and results in rapidly increasing scientific 
output over the past three decades (1990–2020) and in emerging 
research fields (Xu et al., 2021). One of these fields includes ENMs/

SDMs, which have been useful tools for understanding the dynamics 
in the distribution of species of commercial value and, consequently, 
to support their efficient and targeted management. Through ENMs/
SDMs: (1) fisheries ecologists and biologists study the spatial and 
temporal distribution patterns of species (e.g., Pennino et al., 2022; 
Rufener et al.,  2017), including attempts to consider the three-
dimensionality of the marine environment (Bentlage et al.,  2013; 
Duffy & Chown, 2017); (2) some computational software with au-
tomated modelling facilitates finding shoals by vessel captains (e.g., 
CatSat: https://www.catsat.com); and (3) more complex, dynamic, 
and multispecific models generate robust outputs allowing better 
decisions for managers (e.g., Coll et al., 2020).

Bibliometric analysis is a systematic approach used to quantita-
tively evaluate the scientific literature (Hood & Wilson, 2001) and 
research trends in a specific research field (Li et al., 2009). This kind 
of analysis is useful for deciphering and mapping the cumulative 
scientific knowledge and evolutionary nuances of well-established 
fields by making sense of large volumes of unstructured data in 
rigorous way (Donthu et al.,  2021). When well done, bibliometric 
studies can build solid foundations for advancing a field in novel and 
meaningful ways providing such as: a general overview, knowledge 
gaps, and novel ideas for investigation (Donthu et al., 2021). In the 
field of ENMs/SDMs, bibliometric studies have been performed to 
quantify and characterize global (Barbosa & Schneck,  2015; Vaz 
et al., 2015) or specific geographic areas (e.g., Latin American sci-
entific literature; Urbina-Cardona et al.,  2019). The studies also 
covered different areas of research, such as for management pur-
poses (Cayuela et al., 2009) and projecting invasive species distri-
bution (Barbosa et al., 2012; Marcelino & Verbruggen, 2015; Silva 
et al., 2021). These studies showed a pattern of rapid growth in the 
number of publications, mainly in recent decades, following what 
is observed in reviews of ENMs/SDMs (Guisan et al., 2013; Melo-
Merino et al., 2020; Pickens et al., 2021; Robinson et al., 2011, 2017; 
Svenning et al., 2011) as well as standards and guidelines to obtain 
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better results when using correlative models (Araújo et al.,  2019; 
Sillero et al.,  2021; Zurell et al.,  2020). Some systematic reviews 
and/or bibliometric studies have already been performed on ENMs/
SDMs usage in marine environments (Melo-Merino et al.,  2020; 
Pickens et al., 2021; Robinson et al., 2017). Robinson et al. (2017) and 
Melo-Merino et al. (2020) categorized 236 and 328 retained papers 
among marine biogeographic realms, taxonomic groups, methods 
applied, focus of research, among others. Furthermore, Robinson 
et al. (2017) perceived that 94% of studies failed to report properly 
uncertainty of data and model parameters and proposed recom-
mendations for best practices in spatiotemporal modelling. Melo-
Merino et al. (2020) explained the ecological niche concepts (based 
mainly in Soberón & Peterson, 2005 and Peterson & Soberón, 2012) 
and deeply discussed aspects of each aforementioned category. 
Through 225 retained articles, Pickens et al.  (2021) focused their 
effort mainly on determining how data sources, statistics, and pre-
dictor variables differed among fish guilds. Although these three 
studies explored aspects such as publication growth over time and 
most studied biogeographic realms and taxonomic groups, the first 
two were more comprehensive, approaching all taxonomic groups in 
marine environment; the third was restricted to only marine fishes. 
Despite the bibliometric analyses done on ENMs/SDMs, none have 
specifically focused ENMs/SDMs connected to fishery resources.

Many questions arise when we think about using ENM/SDM to 
determine the distribution of species important to fisheries: When 
it started? Who publish? What taxon has been studied? To answer 
some of these questions, we conducted a bibliometric analysis to 
elucidate the aspects of articles applying ENMs/SDMs on fishery 
resources based on articles published in peer-reviewed journals 
indexed in the Science Citation Expanded - Web of Science and 
Scopus databases. Our main goals were: to (i) verify whether the 
number of scientific articles increased over the years, (ii) identify 
which journals and countries published these articles, (iii) verify the 
scientific collaboration between countries, and (iv) identify the focus 
of research. Additionally, we identified the most studied (v) marine 

biogeographic realms, (vi) taxonomic groups, (vii) life phases, (viii) 
oceanographic zones and (ix) behaviours for fishery resources, and 
finally identified the different (x) methods applied and (xi) types of 
biological and (xii) types of environmental data.

2  |  MATERIAL AND METHODS

We used the Science Citation Index Expanded (SCI-EXPANDED) 
database of Clarivate Analytics Web of Science (WoS) and Scopus 
database to search the scientific literature on the use of ENMs 
and SDMs in fishery resources (updated on August 24, 2022). We 
conducted the search using a combination of two groups of terms 
inserted in the topic field option (i.e., title, abstract and author key-
words, and keywords plus) from WoS and in ‘paper title, abstract, 
and keywords’ from Scopus. Inspired by Melo-Merino et al. (2020), 
the chosen terms were (“ecological niche model*” or “species distri-
bution model*” or “habitat suitability model*” or “bioclimatic* enve-
lope model*” or “habitat model*” or “spatial model*”) and (“fishing 
resource*” or “fisheries resource*” or “fishery resource*” or “fish-
ing” or “fisheries” or “fishery”). In our search only scientific articles 
(i.e., primary research articles) published in English until December 
2021 were considered. The initial search resulted in a total number 
of 1535 articles, of which 759 were from the WoS and 776 were 
from Scopus databases. However, 595 were duplicated among the 
two databases, resulting in 940 articles after removal. We had no 
access to ten full-text articles and therefore they were excluded 
(“difficult-to-access journals will have to survive without our cita-
tions!”; Peterson & Soberón, 2012). Next, we manually revised each 
of the 930 articles to exclude the studies on ENMs/SDMs that did 
not meet the following criteria: (i) studies with species related to 
fisheries with commercial or recreational value (this criterion re-
moved studies on corals, marine mammals, seabirds, sea turtles and, 
sponges), (ii) studies on species with total or partial life cycle living 
in marine environment (excluding lacustrine species), (iii) theoretical 

F I G U R E  1  Flowchart of the PRISMA 
process for identifying articles on ENMs/
SDMs in fishery resources.
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or methodological articles with at least one case study, (iv) studies 
in which the ENMs/SDMs were explicitly used to study the distribu-
tion of species, and (v) studies modelling the distribution of species 
(excluding the modelling distribution of fishery fleets). This step re-
duced our number of articles to 378 published between 1999 and 
2021. This methodology followed the four phases (i.e., identifica-
tion, screening, eligibility, and included) of the preferred reporting 
items for systematic review and meta-analyses (PRISMA) to select 
articles (Moher et al., 2009). The analytical framework (flowchart) 
of the methodology employed is illustrated in Figure 1. The list of 
selected articles is available in Appendix S1.

From each of the 378 articles, we extracted the following infor-
mation: (i) year of publication, (ii) journal of publication, (iii) country 
of author(s), (iv) focus of research (6 levels e.g., current distribution, 
climate change), (v) biogeographic marine realm (13 levels; e.g., 
temperate northern Atlantic, southern ocean; based on Spalding 
et al., 2007), (vi) oceanographic zone in which the study was carried 
out (2 levels; estuarine/coastal, oceanic), (vii) behaviour of the stud-
ied species (7 levels; e.g., pelagic, reef-associated; based on Froese 
& Pauly, 2022), (viii) taxonomic group (7 levels; e.g., Actinopterygii, 
Crustacea), (ix) life phase investigated (2 levels; immature, adult), (x) 
methods used to generate the predictions (multiple levels; e.g., GLM, 
MaxEnt), (xi) type of biological data (6 levels; e.g., presence-only, 
presence-absence). Last, we classified by (xii) type of environmental 
data (3 levels) based on Soberón and Nakamura (2009) among abi-
otic (e.g., temperature, salinity), bioticnon-interactive (biological variable 
which the presence of modelled species do not influence such vari-
able; e.g., chlorophyll-a concentration) and bioticinteractive (biological 
variable which the presence of modelled species influence such vari-
able; e.g., competitor). For methods used, we also calculated if they 
were applied singly or under ensemble approach. Please see the de-
tailed information of the aforementioned categories in Table 1 and 
discussion for definitions. If an article fit in more than one category, 
both categories were considered, and for this reason, the results 
were showed in proportion (%). Because some behaviours aspects 
change between estuarine/coastal and oceanic zones and focus of 
research or life phases vary between taxonomic groups, such results 
and discussions were combined.

Overall, the results were showed in map, barplots, dotplots, 
donut charts, radar charts, and tables in terms of number or fre-
quency of articles. Additionally, we performed a scientific collabo-
ration network between countries where nodes are countries and 
links are number of collaborations (Aria & Cuccurullo,  2017). All 
analyses and plots were developed in R (R Core Team, 2021) through 
the ggplot2 v.3.3.5 (Wickham, 2016), and bibliometrix v.3.2.1 (Aria & 
Cuccurullo, 2017) packages.

3  |  RESULTS

Overall, 378 articles were retained and included in this study. There 
has been an increasing number of articles since 1999 and a signifi-
cant acceleration after 2010 (Figure 2). The articles by year reached 

a maximum of 81 articles in 2020. There were no articles published 
in 2004 on the list. Sixty-nine journals published studies linking 
ENMs/SDMs and fishery resources; however, only twenty journals 
accounted for 70% of articles (Table  2), and their impact factors 
(IFs) varied between 1.568 and 10.863, while the h-index varied be-
tween 33 and 332. From these published articles, 150 established a 
coauthorship with someone from a different country than the pri-
mary author, among the 35 countries across the 378 articles. The 
top-20 most frequent collaborator countries created three major 
groups centred in United States of America (USA) and European 
countries (Figure  3). Approximately half (49.9%) of the studies on 
the list focused their research on the current distribution of spe-
cies followed by future predictions due to climate change (20.9%) 
and spatial distributions as a baseline for management issues (21%). 
Methodological, invasive species and past climates topics accounted 
for only 8% of articles (Table 3).

Among marine biogeographic realms, the Temperate Northern 
Atlantic and Temperate Northern Pacific were by far the most stud-
ied regions (Figure 4a). In fact, approximately half studies covered 
these two realms. At the other extreme, the Eastern Indo-Pacific, 
Temperate Southern Africa, Western Indo-Pacific, and Southern 
Ocean have fewer than fifteen published articles each (Figure 4a). 
Articles of ENMs/SDMs on adult Actinopterygii were the most 
frequent, comprising 51% of articles (Figure  4b). The following 
most frequent taxonomic groups included adult Elasmobranchii 
and Crustacea, comprising 19.8% and 12.2% articles, respectively. 
Surprisingly, the number of articles about the three Mollusca 
groups was very similar (6% ± 2). A total of 79% articles included 
organisms exclusively in their adult stage compared with 11% in im-
mature stages (egg, larval, and juvenile) or both (10%) (Figure 4b). 
More studies were carried out in estuarine/coastal zones than in 
oceanic waters (Figure  4c). Moreover, studies in the estuarine/
coastal zones comprised a larger diversity of behaviours, such as 
demersal, benthic, and reef-associated. In contrast, studies in oce-
anic zones were mostly restricted to pelagic and benthopelagic or-
ganisms (Figure 4c).

Fifty-nine applied methods were accounted (Appendix  S2). 
The top-fourteen most popular methods were applied in ap-
proximately 86% of studies (Figure 5a), but we highlight the fol-
lowing methods: Generalized Additive (Mixed) Models (GAM), 
Maximum Entropy (MaxEnt), Generalized Linear (Mixed) Models 
(GLM), Boosted Regression Trees (BRT), and Random Forest (RF). 
GAM and GLM were used under frequentist and Bayesian infer-
ences (Figure  5a). Thirty-five articles combined between two 
and eighteen methods under an ensemble approach (Figure  5a). 
From most popular, four methods were applied without ever 
being a part of any ensemble approach (Habitat Suitability Model, 
Dynamic Bioclimate Envelope Models, Arithmetic Mean Models, 
Geometric Mean Models), and five methods were only applied 
in an ensemble context (Artificial Neural Network, Multivariate 
Adaptive Regression Splines, Classification Tree Analysis, Flexible 
Discriminant Analysis, Surface Range Envelope) (Figure  5a). The 
most common biological data were presence-absence and catch 
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rate (catch-per-unit-effort; CPUE or similar e.g., NPUE, BPUE) fol-
lowed by presence-only, which combined accounted for 80% of 
input data (Figure 5b). Considering the environmental data, 45% 
and 42% of articles used abiotic-only or abiotic plus noninteractive 
biotic variables, respectively (Figure  5c). Only 13% used abiotic 
plus interactive biotic variables (Figure 5c), and none exclusively 
used interactive biotic variables.

4  |  DISCUSSION

4.1  |  State of the art

Our bibliometric analysis revealed an increasing number of ar-
ticles published between 1999 and 2021, especially after 2010. 
The acceleration in use of these models in fishery resources 

F I G U R E  2  Yearly and cumulative 
number of articles on ENMs/SDMs in 
fishery resources until December 2021 
indexed in the Web of Science and Scopus 
databases.

Journal Number of articles IFa h-index

ICES Journal of Marine Science 32 3.593 117

Frontiers in Marine Science 26 4.435 49

Fisheries Oceanography 25 2.422 94

Fisheries Research 17 2.422 94

Marine Ecology Progress Series 16 2.359 188

Plos One 16 3.24 332

Canadian Journal of Fisheries and aquatic 
Sciences

13 2.46 153

Hydrobiologia 12 2.385 141

Diversity and Distributions 11 4.092 118

Deep-Sea Research Part II - Topical 
Studies in Oceanography

8 2.732 140

Ecological Modelling 8 2.93 156

Journal of Sea Research 8 2.108 81

Ecological Applications 7 4.252 213

Ecology and Evolution 7 2.91 63

Global Change Biology 7 10.863 255

Journal of Marine Systems 6 2.96 109

Marine and Coastal Fisheries 6 1.568 33

Progress in Oceanography 6 3.81 132

Estuarine, Coastal and Shelf Science 5 2.929 134

Marine Policy 5 4.315 104

aImpact Factor of 2021 (JCR).

TA B L E  2  Top-20 journals (plus impact 
factor and h-index) that published articles 
on ENMs/SDMs in fishery resources until 
December 2021 indexed in the Web of 
Science and Scopus databases
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(2010) occurred a few years after compared with more compre-
hensive studies in marine environments (2005) (Melo-Merino 
et al.,  2020; Robinson et al.,  2017). This growing use of ENMs/
SDMs is expected, as they can generate good insights of distribu-
tion or abundance of a resource (depending on the nature of the 
input data), in view of the inherent sampling difficulties in the 
marine environment. Compared with the mainland, wide zones of 
oceans remains unexplored. In fact, there are few studies based 
on fishery-independent sampling (Pennino et al.,  2019), which 
makes observations in many instances dependent on fisheries 
(e.g., Lezama-Ochoa et al.,  2020; Rezende et al.,  2019; Rufener 
et al., 2017). In many countries, fishery data are the only source 

available to scientists, which requires their careful and validated 
use due to its commercially-driven nature, resulting in possible 
distribution bias (i.e., preferential sampling) (Alglave et al., 2022; 
Rufener et al.,  2021). Despite this point, when properly used, 
fishery data become an important and necessary source and, 
coupled to ENMs/SDMs, could provide a good understanding 
of the dynamics in distribution of fisheries resources (Pennino 
et al.,  2016). In the terrestrial environment, larger human ac-
cessibility, lower cost, and the possibility of nonscientific ob-
servations seem to be the main reasons for the discrepancy 
between the two environments (but see citizen science by Ver 
Hoef et al., 2021). The growing number of articles is also related 

F I G U R E  3  Top-20 country 
collaboration network publishing on 
ENMs/SDMs in fishery resources. Size of 
nodes and links are number of articles and 
collaborations of countries, respectively. 
Arrangement of intragroup (coloured) 
and intergroup (grey) are generated by 
commonness of collaborations.

TA B L E  3  Number of studies among the taxonomic groups and focus of research publishing about ENMs/SDMs in fishery resources

Taxonomic group

Focus of Research

Current 
distribution Climate change Management Methodological

Invasive 
species Past climates

Actinopterygii 163 52 66 18 1 2

Elasmobranchii 56 18 26 8

Crustacea 27 13 7 5

Bivalvia 10 10 6 1 3

Cephalopoda 19 10 8 3

Gastropoda 4 10 2 1 2

Combined commercial species 5 6 5 2

Note: The frequency may be based in counts larger than the total amount of retained articles (378) due to the possibility of multiple fitting among 
categories.
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to the growing computational power that allows researchers to 
develop models with some mastery. Additionally, the expansion 
of free software, open languages (e.g., R, Python), forums, tuto-
rials, and courses (Cobos et al.,  2019; Peterson et al.,  2022) is 
increasing users familiarity. Computational power also increases 
the number of possible answers given by scientists, who have 
been incorporating increasing complexity into the models (Coll 
et al.,  2020). Moreover, three main collaborative groups can be 
observed, linked to historically major global fishery resource con-
sumers (USA, Japan, and Europe; FAO, 2020) and well-explored 
oceanic basins (Pacific, Atlantic and Mediterranean). This can in-
dicate a bias of personal interest of researchers or commercial 
interest of such countries: gathering the maximum available data 
together to improve predictability and sustainability of shared 
fishery stocks.

Applying ENMs/SDMs to estimate the current distribution of 
fishery resources is the default. This is expected since the knowl-
edge of where and when to find fishery resources is the greatest 
purpose for fishers, managers and industry. For some privileged 
fishers, these models make it possible to easily find fish and inverte-
brates over the enormous area occupied by the oceans, beyond its 
standard use for research and management purposes. Additionally, 
understanding species distribution in space has interested ecolo-
gists for a long time (Elton, 1927; Grinnell, 1917; Hutchinson, 1957; 
Soberón & Peterson,  2005; Wallace,  1860). Second, the threat of 
climate change is a constant topic in current ENMs/SDMs publica-
tions. The Intergovernmental Panel on Climate Change (IPCC) has 
highlighted the consequences of ocean warming, acidification, and 
biodiversity loss, among other human-made impacts (IPCC, 2019). 
In the case of fishery resources, biomass reduction in some stocks 

F I G U R E  4  Frequency of studies 
on ENMs/SDMs in fishery resources 
among (a) marine biogeographic realm 
ARC: Arctic, TN-A: Temperate Northern 
Atlantic, TA: Tropical Atlantic, TS-Am: 
Temperate South America, TS-Af: 
Temperate Southern Africa, WI-P: 
Western Indo-Pacific, CI-P: Central 
Indo-Pacific, EI-P: Eastern Indo-Pacific, 
T-Aus: Temperate Australasia, TN-P: 
Temperate Northern Pacific, TEP: Tropical 
Eastern Pacific, SO: Southern Ocean; 
(b) taxonomic group (Actinopterygii, 
Elasmobranchii, Crustacea, Bivalvia, 
Cephalopoda, Gastropoda and combined 
commercial species) and life phase (adult, 
immature, both); (c) oceanographic zone 
(estuarine/coastal, oceanic) and behaviour 
(Pel: pelagic, BenPel: benthopelagic, 
BatPel: bathypelagic, Dem: demersal, 
BatDem: bathydemersal, Ben: benthic, 
Reef: reef-associated). Note that the 
frequency may be based in counts 
larger than the total amount of retained 
articles (378) due to the possibility 
of multiple fitting among categories. 
Credit of silhouette images to Becky 
Barnes, Hans Hillewaert, Nick Schooler, 
Stuart Humphries and Tauana Cunha 
downloaded from https://beta.phylo​pic.
org/.

https://beta.phylopic.org/
https://beta.phylopic.org/
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and displacement of species (Cheung et al., 2009, 2010, 2013) have 
hazardous impacts for worldwide food security; valuing the devel-
opment of predictive ENMs/SDMs. Third, scientists have considered 
the spatiotemporal dynamic variation of fishery stocks in assess-
ments, improving the estimate of indices (Berger et al., 2017) and, 
consequently, of fishery management.

4.2  |  Characteristics linked to fishery resources

There is a stark difference between northern and southern biogeo-
graphic realms considering the number of ENM/SDM articles. The 
obvious reasoning is the heavy economic investment in science 
made by the northern first world countries, which are interested 
in maintaining productive fisheries (Hilborn et al.,  2020). To fulfil 
this goal, we speculate that these countries find in the spatiotem-
poral distribution modelling (through ENMs/SDMs) an opportunity 

to make their fisheries objective, profitable, and sustainable (e.g. 
Abecasis et al., 2014), but specific destination of financial analysis 
is necessary to elucidate this point. For example, the Temperate 
Northern Atlantic has concentrated studies on the North Sea, 
Mid-Atlantic Bight, northern Gulf of Mexico and Mediterranean 
Sea, which are surrounded and/or under the control of the USA, 
Canada, and European countries. Other countries, such as China 
and Japan, are historically dependent on seafood for their food se-
curity (Ghose, 2014), which explains the high usage of modelling in 
the Northern Temperate Pacific. The major groups among collabora-
tions reinforce the idea of interest of countries to study their own 
sea areas (Figure  3). On the other hand, the Eastern Indo-Pacific, 
Temperate Southern Africa, Western-Indo Pacific, and Southern 
Ocean were the least studied realms, an alarming gap, consider-
ing that these regions are continuously explored, mainly by foreign 
industrial fleets (Hilborn et al., 2020). This pattern among biogeo-
graphic realms does not reflect the most important fishery hotspots 

F I G U R E  5  (a) Barplot of frequency 
of studies on ENMs/SDMs in fishery 
resources among applied methods. List of 
methods included in ‘Others’ is available 
in Appendix S2. Percentage of the used 
(b) biological and (c) environmental data 
publishing about ENMs/SDMs in fishery 
resources. Note that the frequency may 
be based in counts larger than the total 
amount of retained articles (378) due to 
the possibility of multiple fitting among 
categories.
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well, highlighting the less studied coast off Peru and Chile, which 
yield the largest catches of anchovy (FAO, 2020).

Actinopterygii were by far the most studied taxonomic group, 
followed by Elasmobranchii and Crustacea. Bony and cartilaginous 
fishes are known to be the most captured resources in oceano-
graphic basins, reaching approximately 72,000 thousand tonnes in 
2020 (85% of total catch) (combined report as finfish, FAO, 2020). 
The modelled bony fish species include some of the most worldwide 
captured fishery resources such as anchoveta (Engraulis ringens, 
Engraulidae) (Silva et al., 2019), cod (Gadus chalcogrammus, Gadidae) 
and (G. morhua, Gadidae) (Li et al., 2018; O'Leary et al., 2020), skipjack 
tuna (Katsuwomus pelamis, Scombridae) (Mugo & Saitoh, 2020), blue 
whiting (Micromesistius poutassou, Gadidae) (Miesner & Payne, 2018), 
European pilchard (Sardina pilchardus, Clupeidae) (Gordó-Vilaseca 
et al.,  2021), and Pacific chub mackerel (Scomber japonicas, 
Scombridae) (Torrejón-Magallanes et al., 2021). Cartilaginous fishes 
compose a diverse taxonomic group that includes important fishery 
resources, such as the largely explored blue shark (Prionace glauca, 
Carcharhinidae) (Cortés et al.,  2010; Maxwell et al.,  2019). Other 
studied species, despite being strongly appreciated for income and 
food, are considered vulnerable, endangered, or critically endan-
gered by the IUCN Red List of Threatened Species (IUCN,  2022). 
Examples are the hammerheads (Sphyrna lewini, Sphyrnidae) and 
(S. mokarran, Sphyrnidae) (Chan et al.,  2021), the whale shark 
(Rhincodon typus, Rhincodontidae) (Petatán-Ramírez et al.,  2020), 
thorny skate (Amblyraja radiate, Rajidae) (Pennino et al., 2019), and 
spiny dogfish (Squalus acanthias, Squalidae) (Dell'Apa et al.,  2017). 
Commercial crustaceans include crabs, swimming crabs, shrimp, krill, 
and lobsters (e.g., Clavel-Henry et al., 2020; Hovey et al., 2012; Luan 
et al., 2018; Naimullah et al., 2020; Silk et al., 2016), which are the 
third most captured group (FAO, 2020). Most modelled Crustacea 
species are likely coastal due to challenges of rare individuals and 
benthic environmental sampling (such as granulometry and rugos-
ity) of benthic deep-sea crustaceans (Hovey et al., 2012). Bivalvia, 
Cephalopoda, and Gastropoda include diverse mussels, oysters, 
squids, octopuses, and abalones (e.g., Ángeles-González et al., 2021; 
Bergström et al., 2021; Gong et al., 2021; Russell et al., 2012; Stirling 
et al., 2016). Surprisingly, these three taxonomic groups appeared 
at almost the same frequency among articles. We expected the 
highlight of the cephalopods because they represent the highest 
catch among mollusks (such as Ommastrephidae species; e.g., Gong 
et al., 2014; Yu et al., 2019; Alabia et al., 2020) (FAO, 2020). More 
frequently modelled adult life phase instead of immature phases 
(egg, larval, and juvenile) can be explained by two possibilities: (1) 
the accessibility of data through fishery activity which is focused 
mainly on the larger and heavier adults, and (2) the majority of spe-
cies strongly change their habitats and behaviours between imma-
ture and adult phases, which implies that spatiotemporal modelling 
of younger phases may not improve the predictability of the distri-
bution of the profitable and fishery-desired adults.

Studies covering estuarine/coastal zones were more frequent 
than in oceanic zones. This trend appears to be related to the easy 
access and significant availability of data in estuarine/coastal zones 

(Robinson et al.,  2011), in contrast to the more difficult access to 
aphotic, abyssal and hadal, ocean zones, which limit the number of 
studies available. For example, the relative proximity to the main-
land and the easier and cheaper sampling facilitate access to data by 
researchers from the Patos Lagoon estuary and the adjacent marine 
coast (southern Brazil) and, consequently, allow long-term observa-
tions among many taxonomic groups (Lemos et al.,  2022). On the 
other hand, access to deeper areas is scarce, hindering direct obser-
vations of both biotic and abiotic data, making it difficult to model 
the distribution of species, even for those based on presence alone. 
Additionally, estuarine and coastal zones are known to be some of 
the most productive in the oceans, resulting in a greater amount of 
fishery resources and fishing effort (Kapetsky & Lasserre,  1984; 
Alongi, 1998), and partially explaining the discrepancy between es-
tuarine/coastal and oceanic zones. Moreover, ENMs/SDMs were 
more common in regard to behaviours such as demersal, benthic, and 
reef-associated at estuarine/coastal than oceanic zones. Demersal 
organisms swim and forage near the sea floor, benthic organisms live 
on or inside the sediment, and reef-associated organisms depend on 
consolidated substrate structured by corals for refuge, feeding and/
or reproduction (Froese & Pauly, 2022). Such behaviours are related 
to benthic environments, which are, as mentioned before, more ac-
cessible in estuarine/coastal zones than in oceanic waters. In oce-
anic zones, the more frequent studies on pelagic and benthopelagic 
behaviours (organisms that live and feed totally or partially near the 
surface of open ocean, respectively) can be explained by the grow-
ing use of surface environmental layers available by remote sensing 
(He et al., 2015; Randin et al., 2020) coupled with catch data derived 
from oceanic fisheries (e.g., longline, purse seine).

4.3  |  Characteristics linked to methods

Among the most applied methods five are noteworthy (from most 
to fewer): GAM, MaxEnt, GLM, BRT, and RF (list of abbreviations in 
Table 1). These methods can be classified in major groups as proposed 
by Martínez-Minaya et al.  (2018). The first includes MaxEnt, which 
was developed to address presence-only datasets and describe some 
measure of habitat suitability (Phillips et al.,  2006). The second in-
cludes BRT and RF, which involve machine-learning algorithms that 
are iterative, generally averaging multiple models among different 
subsets of the data (Franklin,  2010). The third includes GAM and 
GLM, both are statistical models, GAM being an expansion of GLM. 
GAM does not assume a specific form of relationship between the de-
pendent variable and the covariates, contrary to GLM, which assumes 
a fixed linear or other parametric form (Guisan et al., 2002). We found 
applied GAM and GLM using fixed effects but also a mix between 
fixed and random effects (named GAMM and GLMM). This seems to 
be a strategy for authors to explicitly model the nonindependence in 
data (Harrison et al., 2018), such as the time-effect (month, year). The 
application of Bayesian framework has growing in recent years (Kinas 
& Andrade, 2021). Within this paradigm, we can combine (via Bayes' 
Theorem) data uncertainty (via likelihood function) with previous 
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information about all parameters governing the different models (in-
troduced via prior distributions), resulting in the posterior probabil-
ity distribution, which contains all information necessary about the 
parameter (Kinas & Andrade,  2021; Korner-Nievergelt et al.,  2015; 
Martínez-Minaya et al.,  2018). The Integrated Nested Laplace 
Approximation (INLA) was the most used in Bayesian inference com-
pared to others, such as Markov Chain Monte Carlo (MCMC). The pre-
cision and computational efficiency in many latent Gaussian models 
make the INLA largely applicable in fishery context (Martínez-Minaya 
et al.,  2018; Rue et al.,  2017). A previous bibliometric study found 
more frequent use of MaxEnt than GLM and GAM when consider-
ing all marine taxonomic groups (Melo-Merino et al.,  2020), which 
was the opposite that we found. This finding can be explained by the 
major accessibility of higher quality input data (presence-absence, 
catch rate) for fishery resources than for species not targeted in fish-
eries. Frequently, these latter species have solely presence-only (geo-
graphic position) data available from large databases (e.g., GBIF, OBIS) 
– the sufficient input data for MaxEnt modelling. Furthermore, an en-
semble approach was a recurring practice among articles, which is the 
combined application of multiple methods commonly averaging the 
resulting projections. Some authors argue that ensemble improves 
decision-making in face of the uncertainty (Araújo & New,  2007; 
Jones et al., 2012); however, it is debatable whether ensemble model-
ling is better than a single-algorithm approach.

Presence-only, presence-absence, and catch rate biological data 
were used in 80% of all articles. The first two types of data have 
been widely used for ENMs/SDMs because of their availability at 
a broader spatial scale (Elith et al., 2006; Elith & Leathwick, 2009). 
Large repositories such as the GBIF and OBIS contain many occur-
rence points of these types of biological data, favouring their use 
by scientists. Catch rates are largely analysed in fishery data since 
any catch (count, weight) is strongly related to a measure of effort 
(net length, number of hooks, and time fishing) (Schnute, 1985). It 
is noteworthy that presence-only, presence-absence, and catch rate 
are nested data. It means, for example, that catch rate also has infor-
mation of presence-only and presence-absence.

In summary, all methods used abiotic variables and mostly 
used abiotic-only or abiotic plus noninteractive biotic variables. 
Abiotic variables are defined as “conditions, including aspects of 
climate, physical environment, edaphic conditions, etc, that im-
pose physiological limits on species' ability to persist” (Soberón & 
Peterson, 2005). Variables such as sea surface temperature, depth, 
salinity, latitude, longitude, and granulometry were often considered 
in modelling. Their use can be explained by static values (e.g., depth, 
latitude) and/or by ease for sampling (e.g., temperature). The afore-
mentioned definition is also valid for biotic variables if the presence 
of the modelled species does not interact in a short-term period 
with such variables – scenopoetic or noninteractive biotic variables 
(Soberón & Nakamura,  2009). This is the case for phytoplankton 
concentration (or similar, chlorophyll-a concentration and primary 
production) in which the interaction with secondary, tertiary, and 
top trophic levels generally has only bottom-up and not top-down 
effects (Frederiksen et al., 2006). The noninteractive biotic variables 

in our bibliometric analyses mainly included the phytoplankton con-
centration (or similar) and, to a lesser extent, seagrass concentration 
and reef presence. Biotic interactive variables (or bionomic variables, 
Soberón & Nakamura, 2009) appeared in only 13%. The use of this 
kind of variable is rare, but distribution estimates of species at broad 
scales may be more accurate if calibration of ENMs includes relevant 
biotic variables (Araújo et al.,  2014; Barber et al.,  2021; Gherghel 
et al.,  2018; Stephenson et al.,  2022). However, it is important to 
highlight that the inclusion of biotic variables in modelling must con-
sider the complexity of the bidirectional effect of variables. For ex-
ample, the predation risk sometimes varies with animal behaviour 
and environmental conditions (Suraci et al.,  2022), which implies 
that the input of such biotic variables (e.g., prey abundance) may not 
correspond to the real effect on the modelled species. Some meth-
odological strategies such as hierarchical structure on the regression 
coefficients (Wilkinson et al.,  2019) and shared component analy-
sis (Izquierdo et al.,  2021; Paradinas et al.,  2017, 2020; Wilkinson 
et al., 2019) have emerged as extensions of ENMs/SDMs to capture 
the effects of biotic interactions (also known as joint species dis-
tribution models; JSDMs), even though their capability to separate 
environmental effects from biotic interactions is still being discussed 
(Poggiato et al.,  2021). In our survey, the following biotic interac-
tive variables were noteworthy: presence/density of prey, presence/
density of competitor, habitat species diversity, dominant biota and, 
co-occurrence of the same species in different life stages. Finally, 
we clarify that the classification of biotic variables in interactive 
or noninteractive was based on general assumptions for each vari-
able. However, it is known that biological interactions are strongly 
influenced by spatial and temporal scales (Record et al., 2018). For 
example, in a high spatial resolution (smaller grid), the interaction 
between the phytoplankton concentration and a fishery resource 
(e.g. anchovy) can be locally bidirectional or, in other words, the 
abundance of anchovy can reduce the phytoplankton concentra-
tion. Only knowing the biological characteristics of organisms and 
the used scale would correctly classify biotic variables.

4.4  |  Gaps and suggestions

Studies of ENM/SDMs on fisheries resources among southern ma-
rine biographic realms are a gap in this research topic, resulting in 
a loss of opportunity. In the face of data poor fisheries statistics, 
the use of correlative spatial modelling approach should be a prior-
ity to understand spatiotemporal patterns of explored species due 
to its capability to ‘extrapolate’ (considering limitations) the scarce 
samples in hand. In addition to self-investment in spatial modelling 
approaches, we suggest that first-world countries would help the 
emergent and poor countries through scientific collaborations. After 
reducing the discrepancy between studied marine realms, southern 
hemisphere countries would be able to better understand spatiotem-
poral trends of explored species and then propose management al-
ternatives for national and shared stocks. Studies on immature life 
phases, Mollusca taxonomic group, benthic-associated behaviours in 
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oceanic zones, and focusing on species invasion or past climates also 
are gaps. Aspects of the distribution of an entire life cycle and under 
other climatic conditions can be of great value to understand bio-
geographic features and fisheries catches. Some species of Mollusca 
(e.g., Humboldt squid, Dosicus gigas) and benthic-associated behav-
iours in oceanic zones (e.g., Chaceon spp.) contribute significantly to 
fisheries catch worldwide and should not be neglected.

Finally, more is not better: we recommend that in addition to 
a more frequent use of ENM/SDMs, a higher quality is needed for 
the biological input data (preferably catch rate) and for the applied 
methods (those capable to also consider biological beyond the abi-
otic component).

5  |  CONCLUSIONS

This is the first bibliometric study seeking to determine the state 
of the art on the interface between ENMs/SDMs and fishery re-
sources. Additionally, compiling 378 of 930 accessed articles and 
classifying fishery resources and methods represents a consider-
able effort to generate up-to-date information about this issue. A 
clear tendency of an increasing number of articles demonstrates 
the interest of researchers, journals, and collaborative countries 
(centred in three major groups) in improving their knowledge and 
maintaining profitable and sustainable fisheries. More studies in the 
Temperate Northern Atlantic and Temperate Northern Pacific ma-
rine biographic realms seem to be related to first world countries' 
interest in exploring shared fishery stocks. Additionally, more stud-
ies are directly related to more captured and consumed taxonomic 
groups: bony and cartilaginous fish. Benthic-associated behaviours 
(such as demersal and benthic) are more frequent in estuarine/
coastal oceanographic zones than in oceanic zones (where pelagic 
and benthopelagic behaviours predominate), probably due to the 
major accessibility provided by proximity to land. Fourteen methods 
have been well applied, mainly the most popular frequentist GAM, 
GLM, and MaxEnt; however, other alternatives, such as ensemble 
approach and Bayesian inference, have been increasingly explored 
considering their quality-of-fit and forecasting. Large repositories 
and fisheries data support the availability of presence-absence, 
presence-only, and catch rate data for researchers, explaining their 
popular use. Furthermore, abiotic and noninteractive biotic variables 
are largely used due for their static values and/or ease of measure-
ment, however, although rare, interactive biotic variables may im-
prove the current distribution modelling of fishery resources. Last, 
studies among southern marine biographic realms, immature life 
phases, Mollusca taxonomic groups, benthic-associated behaviours 
in oceanic zones, and focusing on species invasion or past climates 
are gaps in this research topic, and must receive more attention in 
the future. We hope the list of articles available in Appendix S1 and 
S2, and the results presented here provide a baseline for the cur-
rent status (strengths, limits and gaps) of the interface between the 
ENMs/SDMs and fishery resources.
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