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The main objective of this study was to develop a statistical model for accurate estimates

of relative growth. The method was based on identifying patterns of the residuals obtained

from the Huxley’s allometric equation. Three different approaches were applied: (1) growth

with variable proportionality and constant allometry coefficient, (2) growth with constant

proportionality and variable allometry coefficient and (3) distinct growth phases in

which proportionality and allometry coefficients remained constant. The proposed

statistical models were applied to the relationship of the otolith size and fish size of

whitemouth croaker Micropogonias furnieri. The best fit was obtained when using

approach (3). A change in the growth parameters was associated with the attainment of sexual

maturity. # 2006 The Fisheries Society of the British Isles

Key words: Micropogonias furnieri; otolith; relative growth; statistical models; variable

allometric growth.

INTRODUCTION

The power-function model (y ¼ a xb), originally proposed by Huxley (1924) for
the description of allometric growth (variation in form related to variation in
size) has been conventionally used in studies of animal growth. According to this
equation, body dimensions increase relative to each other according to a con-
stant defined as b, the allometric coefficient. When b > 1, the y structure is
growing relatively faster than the x structure, and allometry is positive. When
b < 1, allometry is negative. The case in which b ¼ 1 is known as isometry and
implies that y and x are proportional to each other. The a parameter is the
proportionality coefficient between the two variables and corresponds to the
value of y when x ¼ 1 (White & Gould, 1965).
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Huxley’s (1924) model is frequently used for description of relative growth and
determination of sexual maturity in crustaceans, fish length estimates through
backcalculation from scales and otoliths and for the statistical description of the
relationship between mass and length (Le Cren, 1951; Hartnoll, 1978; Francis,
1990).
The condition factor is generally determined through the power-function

model, considering the a parameter as constant (a ¼ y x�b). This parameter is
important for the comparison of populations living in specific food and climatic
conditions, the identification of reproductive cycles, and also for the follow-up of
the feeding activity of a species, evaluating the efficiency of the use of food
sources (Weatherley, 1972; Ricker, 1975).
Although frequently used, the Huxley (1924) model has shown limited capa-

city for the adequate description of relative growth as b, assumed to be constant,
may change during the life cycle (Lovett & Felder, 1989).
The study of calcareous structures such as otoliths, scales and opercular bones

has been important for the determination of the relationship between length and
age in fishes, through backcalculation (Casselman, 1990; Francis, 1990).
Estimations of length based on annuli spacing, however, can result in significant
error if the mathematical model employed is not appropriate for the description
of the allometric variation of the structures throughout ontogeny (Campana,
1990; Zivkov, 1996).
Micropogonias furnieri (Desmarest) is a marine demersal species, which has a

wide distribution along the Atlantic coast, from Mexico to Argentina (Isaac,
1988). Movements into estuaries are related to its life cycle. Young individuals
use these areas for feeding and growth, returning to the ocean when adults,
although some individuals may remain inside an estuary throughout their whole
life cycle (Vazzoler, 1991). Total length (LT) at first maturation (LT50) was
estimated at 200 mm for the estuarine resident group (Castello, 1986; Vizziano
et al., 2002) and 330–350 mm for the those that migrate as juveniles to the
adjacent coastal waters and mature at a higher age in marine waters (Vazzoler,
1971). The large size at maturity and large otoliths makes this species particu-
larly suitable for allometric studies of its growth pattern. Volpedo & Echeverrı́a
(2003) classified the ecomorphological pattern of the sagitta of several species of
the Argentine continental shelf, grouping M. furnieri with other bottom-related
species.
This work investigated a mathematical model for a more accurate description

of relative growth, by considering ontogenetic variation of growth parameters
and using M. furnieri as a model species.

HYPOTHESES FOR CONSTRUCTING THE MODEL

The hypotheses for creating a mathematical model were based on the analysis
of the distribution of residuals after applying Huxley’s allometric equation
(Huxley, 1924). As shown in Fig. 1, a random distribution of residuals after
adjusting the Huxley regression model suggests that the equation is adequate and
that the relative growth is well described. If there is no random distribution of
residuals the model is not adequate, and more complex equations are necessary
for a better description of relative growth. In this case, development of the
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equations is based on the interpretation of the behaviour of parameters a and b
of Huxley’s equation, using three different approaches described in Fig. 1.

APPROACH 1: VARIABLE PROPORTIONALITY AND
CONSTANT ALLOMETRY

Approach 1 transfers all the unexplained variability to the proportionality
coefficient (a), considering parameter b as constant and parameter a as a func-
tion of x: y ¼ f(x)xb. From the fishery point of view, this approach is not
relevant, since variation of parameter a as a function of x has no biological
meaning (White & Gould, 1965). On the other hand, keeping parameter a
constant is important proceeding since it is generally used as an indicative of
the condition factor (Le Cren, 1951). Approach 1 was therefore abandoned.

Fit Huxley model

Plot residual distribution

Random residuals?

Yes! No!

Approach 1: 
Variable proportionality (a)

and constant allometric
coefficient (b)

Approach 2: 
Constant proportionality (a)

and variable allometric
coefficient (b)

Approach 3: 
Growth in distinct stanzas,

each one with constant
proportionality (a) and

allometric coefficient (b)

Huxley model
adequate!

FIG. 1. Methodological approach for improving the general model of relative growth of Huxley (1924),

considering complex allometric patterns.

198 G. BERVIAN ET AL .

# 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 68, 196–208



APPROACH 2: CONSTANT PROPORTIONALITY AND
COMPLEX ALLOMETRY

Several authors have applied different approaches (Strauss, 1993) with com-
plex allometry patterns. In this approach, all the variability is transferred to b,
considering parameter a constant and parameter b as a function of x [b ¼ f(x)]:
y ¼ a x f(x). This approach is convenient since the distribution of b values as a
function of variable x, besides representing the relative growth rates between
variables x and y, is also indicative of the animal’s growth pattern. This pattern
can be: (1) constant isometric, characterized by the random distribution of b
along a horizontal line where f(x) ¼ 1 (Fig. 2, A), (2) constant allometric,
characterized by the random distribution of b along a horizontal line where
f(x) ¼ any constant different from 1 (Fig. 2, B), or (3) variable allometric, in
which the distribution of b follows a pattern different from that of a horizontal
line, where f(x) ¼ any mathematical function (Fig. 2, C).

APPROACH 3: GROWTH IN DISTINCT STANZAS, EACH
ONE WITH CONSTANT A AND B

Approach 3 considers a growth pattern with different phases or stanzas,
separated by a stanza changing point (SCP), which indicates the value of x at
the moment when the animal growth pattern changes. Huxley (1924) already
identified the presence of different growth phases. Strauss (1993) calls this
approach as polyphasic allometry. For simplicity, a model with only two stanzas
will be described, although the general model accepts the use of several stanzas.
Each growth phase is described through different power equations, one for

animals with a size smaller than the SCP and another for animals larger than the
SCP: stanza 1, y1 ¼ a1 ðxÞb1 and stanza 2, y2 ¼ a2 ðxÞb2 where a1 and b1 are the
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FIG. 2. Patterns of animal growth indicated by distribution of allometry coefficient (b) against x. A,

Constant isometric growth (b ¼ 1); B, constant allometric growth (b < or > 1); C, variable allo-

metric growth [b ¼ f(x)].
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parameters of the allometric equation of stanza 1, and a2 and b2 are the para-
meters of the allometric equation of stanza 2.
The polyphasic growth pattern can be mathematically described by two dif-

ferent procedures, which are described below.

POWER-EQUATIONS SWITCHED ON AND OFF BY A
LOGISTIC FUNCTION: APPROACH 3A

This approach integrates stanzas 1 and 2 equations into a single mathematical
function by the introduction of an empirical logistical equation acting as a switch
function (Fw). By multiplying any function by a logistic (Fw), the function could
be turned on, when Fw value is near one, or off, when Fw value is near zero:
Fw ¼ 1þ eRscðx�PscÞ� ��1

, where Rsc is the stanza changing rate and Psc is the value
of the variable x that corresponds to the SCP.
Using a logistic function as a switch is an interesting tool because the function

can generate y values that change from zero to one or from one to zero with any
x values. The Psc indicates the average midpoint from where the growth pattern
is changing and the Rsc controls how fast the change occurs. Using a set of
logistic functions as switches, complex patterns could be described by a single
equation. For two stanzas, the resulting mathematical function is as follows:

y ¼ ða1 xb1ÞFw

� �þ a2 xb2
� �ð1� FwÞ
� �

: ð1Þ
POWER-EQUATION WITH a AND b PARAMETERS
SWITCHED INTO DIFFERENT VALUES BY LOGISTIC
FUNCTIONS: APPROACH 3B

This approach considers the power-function as a general growth rule where
parameters a and b could be modified together to specific values for each stanza,
regulated by ontogenetic or environmental factors (Swain & Foote, 1999). A
growth pattern with a polyphasic allometry with three or more stanzas could be
described by this approach, but at the cost of increased mathematical complex-
ity, with a switch function for each additional stanza necessary. To keep the
model simple, only two states will be considered (a1 and a2; b1 and b2), before
and after the SCP, following a logistic function:

y ¼ f ðaÞxf ðbÞ ð2Þ
where f ðaÞ ¼ a1 þ ða2 � a1Þ 1þ eRscðx�PscÞ� ��1

, f ðbÞ ¼ b1 þ ðb2 � b1Þ
1þ eRscðx�PscÞ� ��1

, and a1 and a2 are values of a in the first and second stanzas,

and b1 and b2 are values of b in the first and second stanzas, respectively.

MATERIALS AND METHODS

RELATIONSHIP BETWEEN OTOLITH LENGTH AND TOTAL
LENGTH OF M. FURNIERI

The relationship between otolith length (LOT) and LT in M. furnieri was used as an
example to analyse the behaviour of the allometric coefficient. The data used in this
analysis are derived from samples collected on Rio Grande do Sul coast, between 1987
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and 1992, comprising a total of 1321 specimens of M. furnieri. Using the empirical
function for backcalculation, LOT was established as the predictor variable:

LT ¼ a LOT
b ð3Þ

Parameters a and b of equation (3) were estimated by the least squares from ln-
transformed data:

ln LT ¼ ln aþ b lnLOT ð4Þ
To minimize the effects of data concentration in particular size classes, as well as

decreasing the error of ln-transformation resulting from natural variability (Smith,
1993), data were grouped into LT class intervals of 1 mm, and the average LOT were
calculated for each size class. The dispersion of individual data, however, was not
omitted.
Knowing a, an allometric coefficient for each size class (bsc) was isolated through the

following expression, derived from equation (4):

bsc ¼ lnðLT a�1ÞðlnLOTÞ�1 ð5Þ
To identify the presence of any pattern, each value of bsc was plotted as a function of

LOT. Once a non-linear pattern was identified, it was empirically described through a
polynomial equation of the minimum degree that adequately fitted the data. Polynomial
adjustment was performed using Microsoft Excel 5.0:

bsc ¼ cnLOT
n þ cn�1 LOT

n�1 þ . . .þ c1LOT þ c0 ð6Þ
where c represents the parameters of the polynomial equation.

Polynomial models can be useful to express complex relationships, as in variation
in the allometric coefficient, but the method is solely empirical, making almost imposs-
ible any biological interpretation of the parameters (Needham, 1950; Gould,
1966). Nevertheless, polynomials are simple to use and fit, and could be used as empir-
ical functions describing the allometric coefficient (bsc) for approach 2:

y ¼ a xðcnLOT
nþcn�1 LOT

n�1þ...þc1 LOTþc0Þ:

As a by-product, the polynomial model works as a tool to identify changes in the
allometric coefficient throughout ontogenetic development. By definition, a derivative
equation describes the pattern of how the instantaneous rates (dy/dx) of any function are
changing through a range of x values. By using the first order derivative of the poly-
nomial equation (6), the Psc, necessary for approach 3, could be identified as the x value
where the function crosses the x-axis. More than just theoretical information, the Psc is
indicative of different growth phases and represents important information to be used in
model development.
Once the Psc is identified, independent power equations could be adjusted to data

below and above this point (approach 3): y1 ¼ a1 ðxÞb1 ; y2 ¼ a2 ðxÞb2 . Equations (1)
(approach 3a) and (2) (approach 3b) were then adjusted using previous estimates of a1,
b1, a2, b2 and Psc as starting values. The Rsc was initiated as one as the starting value.
Model fitting was performed by SPSS 11.5 Non-linear Regression Routine, using least
squares as loss function, Sequential Quadratic Programming as estimation method and
bootstrap estimates of S.E. At this point, as ln-transformation was not necessary, model
adjustment was performed using all individual data.
After fitting the solutions (equations) describing growth pattern with complex or poly-

phasic allometry, each one following a different approach, the problem was which solution
to choose. The criteria could be: (1) just numerical (or statistical), by minimizing the residual
variance (S2) for measuring the fitness or maximizing the coefficient of determination (r2)
for measuring the relationship, (2) visual, with no identifiable pattern in residual distribu-
tion, (3) by parsimony, choosing themodel with least parameters, or (4) theoretical, selecting
the model in which the parameters or most of them present biological meaning. To decide
which model to use based in all these criteria goes beyond the scope of the present work.
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RESULTS

The relationship between LOT and LT for M. furnieri was described as follows

[Fig. 3(a)]: LT ¼ 19 � 9LOT
1�061ðS2 ¼ 767 � 4Þ. The Huxley (1924) equation did

not fit the distribution of mean LT and LOT points. The non-random pattern
of the standardized residuals [Fig. 3(b)] shows the inadequacy of the simple
power-function. Further, the allometric coefficient (bsc) for each otolith length
class was isolated (equation 5). Instead of presenting a linear horizontal distribu-
tion, the allometric coefficient varied as a function of size, presenting a complex
pattern. To this pattern a polynomial function of the third degree was fitted [Fig. 3(c)]:

bsc ¼ 0 � 00003011LOT
3
m � 0 � 001950LOT

2
m þ 0 � 03685LOTm þ 0 � 8756 ðr2 ¼ 0 � 937Þ;

where m is the mean. This polynomial function can be used as a substitute for the
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FIG. 3. Total (LT) and otolith (LOT) lengths of Micropogonias furnieri. (�, individual measurements; ^,

average values for 1 mm size class). (a) Relationship betweenLOT andLT estimated from the allometric

equation (Huxley, 1924), (b) standardized residuals estimated from allometric equation (Huxley, 1924),

(c) distribution of allometry coefficient against LOT (trend line described by a polynomial function), (d)

relationship between LOT and LT estimated from the allometric equation with variable allometry

coefficient (b ¼ polynomial), (e) standardized residuals of relationship between LOT and LT estimated

from allometric equation with variable allometry coefficient (b ¼ polynomial) and (f) first derivative of

the polynomial function ( , the stanzas changing point, Psc).
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allometric coefficient (b) in the Huxley’s model (approach 2), which results in

[Fig. 3(d)]: LTm
¼19�9L

OT
ð0�00003011LOTm

3�0�001950LOTm
2þ0�03685LOTm

þ0�8756Þ
m

ðS2¼555�8Þ The ade-

quacy of the new model for relative growth description could be seen through
the residuals distribution [Fig. 3(e)].
As a by-product, as described above, the bsc polynomial function could be

used as a first approach to estimate the stanzas changing point of polyphasic
allometry (approach 3).
By making y0 equal to zero in the first derivative of the bsc function

(y0 ¼ 0�00009 x2 � 0�0039 x þ 0�03685) and isolating x, the Psc was estimated
as 14�4 mm [Fig. 3(f)]. Simple power functions were then calculated for each
growth stanza (approach 3). Stanza 1 was calculated including otolith average
lengths up to 14�4 mm while stanza 2 was calculated with higher values,
resulting in the following equations: stanza 1, LTm1

¼ 14 �7LOT1�212
m

ðr2 ¼ 0 �998Þ
and stanza 2, LTm2

¼ 42 �1LOT0�820
m

ðr2 ¼ 0 �996Þ.
These preliminary values of the parameters a1, b1, a2, b2 and Psc were then used as

startingvalues for the adjustment of themathematicalmodels proposed in approach3.
Results are summarized in Tables I and II. The proposed models resulted in
the following equations for the relationship between the LOT and LT in M. furnieri:
approach 3a (growth with power-equations in stanzas) [Fig. 4(a)], LT ¼ 14 � 8ð
LOT

1�202ÞFw þ 42 � 0LOT
0�820� �ð1� FwÞ, ðS2 ¼ 562 � 3Þ, Fw ¼ ½1þ eðLOT�14�1Þ��1

and approach 3b (growth with parameters in stanzas [Fig. 4(b)], LT ¼ ½14 � 7þ
ð42 � 5� 14 � 7Þð1þ e�ðLOT�13�3ÞÞ�1�LOT

½0�817þð1�214�0�817Þð1þeðLOT�13�3ÞÞ�1�; ðS2 ¼ 556 � 7Þ.
Estimated values, S.E. and 95% CI of the parameters are given in Tables I

and II and coefficients of determination and residual variances for the
Huxley’s power function and approach 3 proposed models are presented in
Table III. The distribution of standardized residuals resulting from approach
3a and 3b are shown in Fig. 4(c), (d).

TABLE I. Statistical summary of non-linear regression, estimated by SPSS 11.5 software,
according to approach 3a (equations in phases with switch function) (equation 1) where
a1 and a2 are the proportionality coefficients for the first and second growth stanzas, b1
and b2 are the allometric coefficients for the first and second growth stanzas, Rsc is the
stanza changing rate, indicating the speed of changing from stanza 1 to stanza 2, and Psc

is the value of the variable x that corresponds to the stanza changing point. Model fitted
to total length (y) and otolith length (x) of Micropogonias furnieri

Asymptotic 95%
CI

Parameter Estimate
Asymptotic

S.E. Lower Upper

a1 14�8 1�994 10�9 18�7
a2 42�0 1�824 38�4 45�6
Psc 14�1 1�321 11�5 16�7
Rsc 1�0 0�527 �0�033 2�032
b1 1�202 0�0574 1�090 1�315
b2 0�820 0�0137 0�794 0�848
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TABLE II. Statistical summary of non-linear regression, estimated by SPSS 11.5 soft-
ware, according to the mathematical approach 3b (parameters in phases) (equation 2)
where a1 and a2 are the proportionality coefficients for the first and second growth
stanzas, b1 and b2 are the allometric coefficients for the first and second growth
stanzas, Rsc is the stanza changing rate, indicating the speed of changing from stanza
1 to stanza 2 and Psc is the value of the variable x that corresponds to the stanza
changing point. Model fitted to total length (y) and otolith length (x) of

Micropogonias furnieri

Asymptotic 95%
CI

Parameter Estimate
Asymptotic

S.E. Lower Upper

a1 14�7 2�576 9�6 19�7
a2 42�5 1�810 38�9 46�0
Psc 13�3 1�556 10�2 16�3
Rsc 1�0 0�8011 �0�572 2�571
b1 1�214 0�0755 1�066 1�362
b2 0�817 0�0135 0�791 0�843
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FIG. 4. Total length (LT) and otolith length (LOT) ofMicropogonias furnieri. (�, individual measurements;

^, average values for 1 mm size class). (a) Relationship between LOT and LT estimated following

approach 3a (equations in two stanzas), (b) relationship between LOT and LT following approach 3b

(parameters in two stanzas), (c) standardized residuals of relationship between LOT and LT esti-

mated following approach 3a and (d) standardized residuals of relationship between LOT and LT

estimated following approach 3b.
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DISCUSSION

Huxley’s (1924) allometric model, originally formulated based on the compar-
ison of volumetric measurements, was later expanded to be used for the compar-
ison of linear dimensions. It has been considered as a kind of biological law
determining the growth of parts of an organism in relation to each other (Smith,
1980; Lovett & Felder, 1989). The ease of calculation and interpretation of the
allometric coefficient made the model generally useful, but there is some question
about the capacity of a power function of the type y ¼ axb to describe relative
growth (Hartnoll, 1982; Lovett & Felder, 1989; Strauss 1993, Lleonart et al.,
2000).
Relationships between calcareous structures and body size in fishes are char-

acterized by variability, generally as a function of external factors such as
temperature, salinity and food availability (Casselman, 1990; Swain & Foote,
1999). Most estimates of fish length by backcalculation are based on hypotheses
which assume a proportional growth of the structures under study (Francis,
1990). Growth of calcareous structures in relation to body size, however, is
variable, which results in error in the estimates of backcalculated body length
(Fukuwaka & Kaeriyama, 1997). Zivkov (1996) considers that proportional
hypotheses do not have a biological meaning, since growth is a complex self-
regulating process, which changes continually during ontogeny, so that adequate
equations are necessary for a better description of the process.
Recent studies have shown differences between ontogenetic phases in the

otolith-body size relationship, through the finding that otoliths grow in incre-
ments non-proportional to somatic growth (Reznick et al., 1989; Secor & Dean,
1989; Hare & Cowen, 1995). Mosegaard et al. (1988) reported that the somatic
and the otolith growth of Salvelinus alpinus (L.) were different at high tempera-
tures, which corroborates the observation that otolith and somatic growth
respond differently to environmental factors.
In the case of M. furnieri, although changes in the length and mass relationship

were not observed (Haimovici & Velasco, 2000), the curve resulting from the
otolith and total length relationship, initially described through a simple power-
function [Fig. 3(a)], revealed an inadequacy of this model. Although the average y
value for each x size class was employed, aiming to reduce the ln-transformation
bias, this procedure did not change the general behaviour of the resulting curve, as
can be observed in the distribution of the residual values [Fig. 3(b)].

TABLE III. Statistical summary of residual variances (S2) and coefficient of determination
(r2), for each of the mathematical models employed. Models fitted to total length (LT)

and otolith length (LOT) of Micropogonias furnieri

Mathematical model General equation r2 S2

Huxley power-function LT ¼ aLOT
b 0�991 767�4

Equations in stanzas (equation 1) LT ¼ (stanza_1 Fw) þ
(stanza_2 (1 � Fw))

0�960 562�3
Parameters in stanzas (equation 2) LT ¼ f ðaÞLOT

f ðbÞ 0�960 556�7
Fw, switch function.

VARIABLE ALLOMETRIC GROWTH OF CROAKER 205

# 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 68, 196–208



The complex ontogenetic pattern of the allometry coefficient [Fig. 3(c)],
derived by isolating parameter bsc and keeping parameter a constant, corrobo-
rates the idea that non-constant allometry was present. Nevertheless, was the
pattern of the parameter bsc necessarily too complex to be described by a
polynomial function (or any other complex function) as proposed by approach
2? This approach was already proposed, using different equations and general
methods, by Jolicoeur (1989) for different data sets concerning several taxo-
nomic groups. Although the proposed model described the data set with enough
quality, polyphasic allometry was not tested.
For the present data, polyphasic allometry (approach 3a and 3b), applying just

two distinct phases or stanzas in which parameters a and b remained constant,
adequately expressed growth as a whole. This simpler and more parsimonious
pattern suggests that the complex behaviour of b in approach 2 is a mathematical
artefact produced by the transfer of all variability to a single parameter.
Nevertheless, as a by-product, approach 2 can be viewed as a new methodolo-
gical tool for determining the stanza changing points (Psc), also called inflection
point of polyphasic (log-log) growth models (Sommerton, 1980; Forbes &
Lopez, 1989). This method is neither better nor worse than the previous ones,
and is just a new tool for identifying it. Once a method to identify Psc is chosen,
even if identified by eye, the parameter is used only as a starting value in non-
linear fitting routines.
Models 3a and 3b can be used for the description of growth as a whole, since

both take into account the existence of allometric variation during ontogeny.
Model 3b, however, besides resulting in little residual variance in the data, is
more elegant, since it keeps the Huxley’s (1924) power-function as a general
biological law, in which parameters a and b change during ontogeny. Model 3a
just connects two different power-equations by a switch-function and is a math-
ematical tool to merge different functions (Sommerton, 1980; Forbes & Lopez,
1989).
The residuals distribution [Figs 3(e) and 4(c), 4(d)] did not show homocedas-

ticity, as is necessary to adjust equations by regular least-squares. This hetero-
cedastic pattern results from regular variability, where absolute variation is
larger in bigger animals. Although it could be corrected using average y values
for x size classes, as shown in the figures, heterocedasticity did not interfere with
the fitting models, as the scatter-plot of residuals were absolutely symmetric
above and below the x axis.
Tables I and II show the calculated Psc at otolith lengths of c. 14�1 and

13�3 mm (models 3a and 3b, respectively). Converting these measurements to
the corresponding LT, values of 363 and 337 mm are obtained. Considering the
size at first gonadal maturation of M. furnieri estimated for the Brazilian south
coast (LT50 ¼ 312 mm; the size at which 100% of females are mature,
LT100 ¼ 400 mm; Vazzoler, 1971), the Psc could be related to a change in the
growth pattern associated with the reproductive biology of the species. In spite
of variations in the first maturation sizes estimated for estuarine regions
(190–200 mm; Castello, 1986; Vizziano et al., 2002), the data analysed in the
present work were derived from coastal samples. The Psc is thus a factor, which
included in the equation, allows an increase in the level of biological informa-
tion, besides providing a better description of relative growth.
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