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BAYESIAN SURPLUS PRODUCTION MODELS (JABBA) APPLIED TO THE 

WESTERN ATLANTIC SKIPJACK TUNA STOCK ASSESSMENT 

Sant’Ana R.1, Kikuchi E.2, Mourato B.L. 3, Kimoto A.4, Ortiz M.4, and Cardoso L.G.2 

SUMMARY 

Bayesian State-Space Surplus Production Models were fitted to Western Atlantic skipjack tuna 

catch and CPUE data using the ‘JABBA’ R package. The ten scenarios were based on the 

previous assessment and on uncertainty grid proposed during the 2022 SKJ Data Preparatory 

Meeting, which in summary corresponded to nine runs based on variations in growth parameters 

and steepness. To implement these scenarios in a Bayesian surplus production model, a Pella-

Tomlinson production function was used and priors for r and BMSY/B0 was derived using the 

concept called Age-Structured Equilibrium Model (ASEM). All scenarios showed similar trends 

for the trajectories of B/BMSY
 and F/FMSY over time.    

RÉSUMÉ 

Les modèles de production excédentaire état-espace de type bayésien ont été ajustés aux données 

de capture et de CPUE du listao de l'Atlantique Ouest au moyen du progiciel JABBA R. Les dix 

scénarios étaient basés sur l'évaluation précédente et sur la grille d'incertitude proposée lors de 

la réunion de préparation des données sur le listao de 2022, ce qui correspondait en résumé à 

neuf scénarios basés sur des variations des paramètres de croissance et de la steepness. Pour 

mettre en œuvre ces scénarios dans un modèle bayésien de production excédentaire, une fonction 

de production Pella-Tomlinson a été utilisée et des priors pour r et BPME/B0 ont été dérivés en 

utilisant le concept appelé modèle structuré par l'âge en conditions d’équilibre (ASEM). Tous 

les scénarios ont montré une tendance similaire pour les trajectoires de B/BPME et F/FPME au 

fil du temps. 

RESUMEN 

Los modelos de producción excedente bayesianos de estado espacio se ajustaron a los datos de 

captura y CPUE de listado del Atlántico occidental utilizando el paquete R de 'JABBA'. Los diez 

escenarios se basaron en la evaluación anterior y en la matriz de incertidumbre propuesta 

durante la reunión de preparación de datos de listado de 2022, que en resumen correspondían 

a nueve ensayos basados en variaciones de los parámetros de crecimiento y la inclinación. Para 

implementar estos escenarios en un modelo de producción excedente bayesiano, se utilizó una 

función de producción de Pella-Tomlinson y se derivaron las distribuciones previas para r y 

BRMS/B0 utilizando el concepto denominado Modelo de equilibrio estructurado por edad 

(ASEM). Todos los escenarios mostraron una tendencia similar para las trayectorias de B/BRMS 

y F/FRMS a lo largo del tiempo.    

KEYWORDS 

Skipjack, stock status, CPUE fits, hindcast, life history priors 
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The skipjack tuna (Katsuwonus pelamis) is widely distributed in the tropical and subtropical waters of the Atlantic, 

Indian and Pacific Oceans (ICCAT, 2006). The species has habitat preferences for an epipelagic realm, generally 

inhabiting open waters with optimum temperature range varying between 20 ºC and 30 ºC (ICCAT, 2006). As a 

function of its wide distribution, skipjack tuna has been intensively exploited by various fisheries around the world 

(ICCAT, 2006). For management purposes, the International Commission for the Conservation of Atlantic Tunas 

(ICCAT) considers two distinct stock units in the Atlantic Ocean, East and West stocks (ICCAT, 2006). In this 

study, we will foccus on the West stock of the skipjack only. This stock is mainly exploited by baitboat fleet, 83% 

of the total catch in average for the all-time series. The purse seiners had subsequently contributed to 12.4% on 

average, and the other fleets had contributed with less than 5%.  

The last Western Atlantic skipjack tuna stock assessment was carried out in 2014 (ICCAT, 2014) and included 

outputs from four distinct models, (a) Mean length-based mortality estimator; (b) Catch-only model; (c) Bayesian 

Surplus Production model (BSP), and; (d) Stock Production Model Incorporating Covariates model (ASPIC). All 

detailed descriptions and concerns about the results of each model can be observed in the Report of the 2014 

ICCAT East and West Atlantic Skipjack stock assessment meeting (ICCAT, 2014). The final summary of the 

models indicated that the West Atlantic skipjack tuna stock was not overfished and not experiencing overfishing. 

Reference points resulted from those models were indicates an MSY around 32,000 metric tons, F2013/FMSY close 

to 0.7 and B2013/BMSY probably close to 1.3 (ICCAT, 2014). 

Here, we present the 2022 preliminary stock assessment results for West Atlantic skipjack tuna stock based on 

the Bayesian State-Space Surplus Production Model framework, JABBA (Just Another Bayesian Biomass 

Assessment; https://github.com/jabbamodel/JABBA; Winker et al., 2018). The JABBA model is a fully 

documented, open-source R package (https://github.com/JABBAmodel) that has been formally included in the 

ICCAT stock catalogue (https://github.com/ICCAT/software/wiki/2.8-JABBA) and has been widely applied in a 

number of recent ICCAT stock assessments, including: South Atlantic blue shark (ICCAT, 2016b), Mediterranean 

albacore (ICCAT, 2017c), South Atlantic swordfish (ICCAT, 2017a; Winker et al., 2018), Atlantic shortfin mako 

shark stocks (south and north) (ICCAT, 2017d; Winker et al., 2017, 2019a), Atlantic blue marlin (Mourato et al., 

2019), Atlantic bigeye tuna (Winker et al., 2019b), Atlantic white marlin (Mourato et al., 2020), Atlantic yellowfin 

tuna (Sant’Ana et al., 2020), Mediterranean swordfish (Winker et al. 2020; ICCAT, 2017b) and South Atlantic 

albacore (Winker et al., 2020c). 

This preliminary assessment of the West Atlantic skipjack tuna stock is guided by the SCRS work plan. A grid 

scenario was built based on the discussions and recommendations that were raised during the 2022 Skipjack Data 

Preparatory Meeting. In this way, extensive model diagnostics, retrospective pattern analysis and model prediction 

skillness were provided to evaluate the fitted models. In addition, this document explores the sensitivity of the 

base case scenario to the inclusion of alternative and additional standardized CPUE indices that have been made 

available for this assessment. 

2. Material and Methods

2.1. JABBA inputs 

This stock assessment is implemented using the Bayesian state-space surplus production model framework called 

JABBA (Winker et al., 2018), which is now available as ‘R package’ that can be installed from 

github.com/jabbamodel/JABBA. JABBA’s inbuilt options include: (1) automatic fitting of multiple CPUE time 

series and associated standard errors; (2) estimating or fixing the process variance, (3) optional estimation of 

additional observation variance for individual or grouped CPUE time series, and (4) specifying a Fox, Schaefer 

or Pella-Tomlinson production function by setting the inflection point BMSY/K and converting this ratio into a shape 

parameter m, (5) extensive diagnostic procedures and associated plots (e.g. residual run tests) and (6) a routine to 

conduct retrospective analysis. A full JABBA model description, including formulation and state-space 

implementation, prior specification options and diagnostic tools is available in Winker et al. (2018). 

2.2. Fishery data 

The ICCAT Secretariat provided fishery catch data for West Atlantic skipjack tuna from 1952 to 2020 (Figure 1). 

Relative abundance indices were made available, principally, in the form of joint standardized CPUE time series. 

These indices cover various periods and represent the distinct fishing gears and fleets that operate over the W-

SKJ stock. A summary of the available indices is described below: 

• BRA BB Past (1981 – 1999) used in the 2014 assessment.

• BRA BB Present (2000 - 2020);

1.  Introduction

https://github.com/jabbamodel/JABBA
https://github.com/JABBAmodel
https://github.com/ICCAT/software/wiki/2.8-JABBA
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• BRA HL (2010 – 2016);

• USA LL (1993 – 2020);

• VEN PS (1987 – 2020).

The CV's for all indices were scaled to an 0.25 average. 

2.3. Model specifications 

The model specifications were based on uncertainty grid defined in the Skipjack Data Preparation Meeting that 

resulted in nine distinct scenarios. These scenarios incorporate three variations in growth parameters as provided 

in Anon (2022) and three variations of steepness (0.7, 0.8, and 0.9). All models were implemented using a Pella 

and Tomlinson production function (Table 1).  

The priors of K was kept uninformative similar to those used in the last assessment of the species. For K, a 

lognormal distribution was implemented using JABBA “range” option. Lower and upper values ranged from 

50,000 t to 200,000 t, which resulted in an approximated mean value of 106,190 t and a CV of 36%. For r, were 

developed priors distribution with an associated shape parameter of a Pella-Tomlinson production function from 

an Age-Structured Equilibrium Model (ASEM) approach with Monte-Carlo simulations (Winker et al., 2019b). 

The stock parameters used as inputs for the ASEM models included the uncertainty grid configuration citet before 

and presented in Table 1.   

For all scenarios, the same initial depletion prior (φ= B1952/K) was defined by a beta distribution with mean = 0.93 

and CV of 5%. All catchability parameters were formulated as uninformative uniform priors. Even as, the process 

error of log(By) in year y for all scenarios were defined by an inverse-gamma distribution with shape parameter 

equal to 0.01 and rate parameter equal to 0.01. 

JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface 

(Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a Markov 

Chains Monte Carlo (MCMC) simulation. The JAGS model is executed from R using the wrapper function jags() 

from the library r2jags (Su and Yajima, 2012), which depends on rjags R package. In this study, three MCMC 

chains were used. Each model was run for 30,000 iterations, sampled with a burn-in period of 5,000 for each chain 

and thinning rate of five iterations. Basic diagnostics of model convergence included visualization of the MCMC 

chains using MCMC trace-plots as well as Heidelberger and Welch (1992), Geweke (1992), and Gelman and 

Rubin (1992) diagnostics as implemented in the coda package (Plummer et al., 2006). 

2.4. Model diagnostics and sensitivity runs 

To evaluate CPUE fits, the model predicted CPUE indices were compared to the observed CPUE. JABBA-

residual plots were used to examine (1) colour-coded lognormal residuals of observed versus predicted CPUE 

indices for all fleet together with (2) boxplots indicating the median and quantiles of all residuals available for 

any given year; the area of each box indicates the strength of the discrepancy between CPUE series (larger box 

means higher degree of conflicting information), and (3) a loess smoother through all residuals aids to detect the 

presence systematic residual patterns. In addition, it depicts the root-mean-squared-error (RMSE) as a goodness-

of-fit statistic. We conducted a runs test to quantitatively evaluate the randomness of residuals (Carvalho et al., 

2017). The runs test diagnostic was applied to residuals of the CPUE fit on log-scale using the function runs.test 

in the R package tseries, considering the 2-sided p-value of the Wald-Wolfowitz runs test. The runs test results 

can be visualized within JABBA using a specifically designed plot function that illustrates which time series 

passed or failed the runs test and highlights individual data points that fall outside the three-sigma limits (e.g. 

Anhøj and Olesen, 2014). 

To check for systematic bias in the stock status estimates, we also performed a retrospective analysis for central 

reference scenario (S05: ASEM h = 0.8 Pella m), by sequentially removing one year of data at a time over a period 

of eight years (n = 8), refitting the model after each data removal and comparing quantities of interest (i.e. biomass, 

fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the reference model that is fitted to full data time series. To 

compare retrospective bias between the models, we computed Mohn’s (1999) rho (ρ) statistic, specifically the 

commonly used formulation defined by Hurtado-Ferro et al. (2014). 

Although the above model diagnostics are important to evaluate the goodness of fit to the data and the consistency 

of benchmarking retrospectively, providing scientific advice should also involve checking that the model has 

prediction skill of future states under alternative management scenarios. To do this, the model-free hindcasting 

cross-validation (HCXval) technique by Kell et al. (2016) was applied, where observations are compared to their 

predicted future values. The HCXval algorithm has in common with retrospective analysis that requires the same 
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two routine procedures of sequential removal the observations and re-fitting the model to the so truncated data 

series, but HCXval involves the additional steps of projecting ahead over the missing years and then cross-

validating these forecasts against observations to assess the model’s prediction skill. A robust statistic for 

evaluating prediction skill is the Mean Absolute Scaled Error (MASE) proposed by Hyndman and Koehler (2006), 

which scales the mean absolute error of prediction residuals to a naïve baseline prediction, where a ‘prediction’ is 

said to have ‘skill’ if it improves the model forecast when compared to the naïve baseline. A widely used baseline 

forecast for time series is the ‘persistence algorithm’ that takes the value at the previous time step to predict the 

expected outcome at the next time step as a naïve in-sample prediction, e.g., tomorrow’s weather will be the same 

as today’s. The MASE score scales the mean absolute error of the prediction residuals to the mean absolute error 

of a naïve in-sample prediction. A MASE score higher than one can then be interpreted such that the average 

model forecasts are no better than a random walk. Conversely, a MASE score of 0.5 indicates that the model 

forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill. 

Finally, the analysis included sensitivity model runs based on forward stepwise inclusion of each index one-by-

one in the model. Taking as prior indices the BRA BB Past and BRA BB Present as default indices in the small 

model. The general idea with this comparative analysis was to evaluate the possible effects of the inclusion of 

each index over estimated biomass dynamic of this stock. 

3. Results and Discussion

The MCMC convergence tests by Heidelberger and Welch (1992), Geweke (1992), and Gelman and Rubin (1992) 

were passed by all estimable key parameters for all models. Adequate convergence of the MCMC chains was also 

corroborated by visual inspection of trace plots (results available on request), which showed good mixing in 

general (i.e., moving around the parameter space). 

The model fits to each of the five standardized CPUE’s indices are shown in Figure 2 for each of the nine 

uncertainty grid scenarios. For all scenarios, the behavior of the model’s fits appeared to be led by the pattern 

observed in the VEN PS index more than the other indices. Some variations and mainly, the decrease trends 

observed in the recent years of the BRA BB Present index and USA LL index tend to be not well interpreted by 

the model. This behavior are common when the trends observed along all time-series have poor signal and that 

can be corroborated by the presence of long and relatively flat time-series index.  

The results of the log-residuals runs tests for each CPUE and each scenario are shown in Figure 3. Green panels 

indicate CPUE indices that passed the runs test with no evidence of a non-random residual pattern (p > 0.05) and 

red panels indicating a failed runs test. In addition, the inner shaded area shows 3-sigma limits around the overall 

mean as proposed by Anhøj and Olesen (2014) and the red circles identify each specific year where the residuals 

are larger than the threshold limit. In all scenarios were observed a same pattern, with a failed behavior in the runs 

test diagnostic procedure for BRA BB Present, BRA HL and VEN PS indices. The other two indices (USA LL 

and BRA BB Past) have passed completely in this diagnostic for all scenarios (Figure 3). The goodness-of-fit 

were comparable among all scenarios, in general, the RMSE statistics were consistent ranging from 42.1% to 

42.7% (Figure 4). This pattern shown some conflicting between indices, mainly at the beginning and final of the 

time-series. The annual process error deviation estimated for all scenarios shown a similar stochastic pattern with 

a constant average centered around the zero and 95% credibility intervals always covering the zero value (Figure 

5), which suggest no evidence of structural model misspecifications. 

The medians of the marginal posteriors for K ranged between 121,544 t (S03) and 208,597 t (S07) (Table 3). The 

values estimated for posterior to prior median (PPMR) and variance (PPVR) ratios estimated to K indicates that 

this parameter have been mixed informed by data and priors for almost all scenarios (S04 – S09). The scenarios 

S01 ~ S03 had been well informed by the priors. Additionaly, there was not observed expressive reductions in the 

precision of the posteriors in relation to the priors defined to this parameter. For the r, the medians of the marginal 

posteriors ranged between 0.443 (S07) and 1.054 (S03). The values of PPMR and PPVR estimated for r, in general, 

show that the priors used have contributed to define the behavior of the posteriors, but it is also possible to realize 

an influence of the data in the posteriors (Figure 6). The initial depletion (φ= B1952/K) marginal posteriors for 

each scenario were also similar and largely informed by the priors distributions.    

The range of MSY median estimates were narrow between all nine scenarios, reaching the lower value in the S07 

scenario (32,716 metric tons) and the higher value in the S03 scenario (40,152 metric tons) (Table 3). Furthermore, 

the marginal posterior medians for BMSY varied between 50,945 (S02) and 79,276 (S07) metric tons, and estimates 

of FMSY showed a small variation between the nine scenarios with median values varying from 0.414 (S07) to 

0.799 (S03) (Table 3).   
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In general, all scenarios showed similar trends for the trajectories of B/BMSY and F/FMSY over time (Figure 7; 

Figure 8). The trajectory of B/BMSY showed a sharp decrease after the year 1980 and a subsequently stable trend 

from 1984 to 2020. This stability in the second period, between 1984 and 2020, possibly are linked to the hyper-

stable pattern observed on the most longer index used in the model (VEN PS index). As commented before, this 

hyper-stable behaviour in most longer time-series index allied to general poor trends in the other indices used in 

this assessment could be an explanatory hypothesis for this stable trend. The F/FMSY trajectory shows a sharply 

increasing trend at the same year that was observed a decrease in B/BMSY trajectory, and after that soft decrease 

trend from 1984 onwards (Figure 7; Figure 8). This abrupt increase pattern observed after 1980 marks the 

beginning of the operations of Brazilian baitboat fleet over this stock. For all scenarios evaluated here, the models 

do not evidenced periods of overfishing (F/FMSY > 1) or even the stock are being overfished (B/BMSY < 1) (Figure 

7; Figure 8). In general, the B/B0 trajectory showed a similar trend for all nine scenarios, with a decrease marked 

at the beginning of 1980’s and a subsequent stable period after that (Figure 9). 

The results of an eight year retrospective analysis applied to scenario S05 are depicted in Figure 10, respectively. 

In general, the Base Case scenario (S05) shows a negligible retrospective pattern. The estimated Mohn’s rho for 

all stock quantities fell within the acceptable range of -0.15 and 0.20 (Hurtado-Ferro et al., 2014; Carvalho et al., 

2017) and these results confirm the absence of an undesirable retrospective pattern (Table 4). The hindcasting 

cross-validation results for all updated indices show predictions within limits of the 95% CRI’s suggesting good 

prediction skills for S05 scenario (Figure 11). Except for the BRA HL last time point exclusion that shown a 

prediction outside of the 95% CRI’s limits. However, the mean absolute scaled error (MASE) estimated were 

slightly above of the reference level (MASE > 1) for BRA BB Present, BRA HL and VEN PS indices, which 

indicates that the average model forecasts are not better than a naïve baseline prediction – like a random walk 

process (Carvalho et al., 2021). Nonetheless, for the index with a flat trend with low variation at the end of the 

time series is expected that the MASE estimation will be close to reference level one.  

The results of the sensitivity analysis based on forward stepwise indices in models (Table 2) are shown in Figure 

12. These results show that when excluded VEN PS index the answer from the model tends to capture the signal

passed from the other indices, building a more pessimistic scenario for the recent status of the West Atlantic 

skipjack stock.  

The Kobe biplots for all scenarios were shown in Figure 13. All scenarios show optimistic status with probabilities 

of the stock being stable on green area (Figure 13). However, if considered the exclusion of the hyper-stable 

effect observed in VEN PS index, this status will probably show a small change as observed in the sensitivity 

analysis. Although, these results are preliminary and they were more explored during the skipjack stock 

assessment meeting and the final model was presented in the report of the meeting. 
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Table 1. Summary of the uncertainty grid scenarios for West Atlantic skipjack tuna. 

Scenario Model r BMSY/K (m) 

S01 ASEM h = 0.7 Pella m Lognormal (0.545, 0.284) 0.40 

S02 ASEM h = 0.8 Pella m Lognormal (0.607, 0.318) 0.41 

S03 ASEM h = 0.9 Pella m Lognormal (0.668, 0.330) 0.42 

S04 ASEM h = 0.7 Pella m Lognormal (0.416, 0.148) 0.38 

S05 ASEM h = 0.8 Pella m Lognormal (0.440, 0.184) 0.37 

S06 ASEM h = 0.9 Pella m Lognormal (0.466, 0.219) 0.36 

S07 ASEM h = 0.7 Pella m Lognormal (0.366, 0.142) 0.38 

S08 ASEM h = 0.8 Pella m Lognormal (0.385, 0.172) 0.36 

S09 ASEM h = 0.9 Pella m Lognormal (0.402, 0.206) 0.35 

Table 2. Summary of sensitivity analysis runs for West Atlantic skipjack tuna (Katsuwonus pelamis). 

Scenario Model Type Indices 

S05 Pella m ASEM h = 0.8 
+ BRA BB Past 

+ BRA BB Present 

S05 Pella m ASEM h = 0.8 

+ BRA BB Past 

+ BRA BB Present 

+ USA LL 

S05 Pella m ASEM h = 0.8 

+ BRA BB Past 

+ BRA BB Present 

+ USA LL 

+ BRA HL 

S05 Pella m ASEM h = 0.8 

+ BRA BB Past 

+ BRA BB Present 

+ USA LL 

+ BRA HL 

+ VEN PS 
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Table 3. Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 

95% credibility intervals of parameters for the Bayesian state-space surplus production models for West Atlantic 

skipjack tuna. 

S01 S02 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K 135,554 89,686 223,440 K 124,239 81,155 190,556 

r 0.861 0.552 1.321 r 0.980 0.618 1.551 

ψ(psi) 0.940 0.815 0.991 ψ(psi) 0.939 0.816 0.991 

σproc 0.103 0.056 0.166 σproc 0.101 0.056 0.164 

FMSY 0.724 0.465 1.112 FMSY 0.782 0.493 1.238 

BMSY 54,219 35,872 89,372 BMSY 50,945 33,278 78,138 

MSY 38,457 29,754 59,238 MSY 39,119 30,300 59,165 

B1952/K 0.931 0.726 1.164 B1952/K 0.930 0.724 1.166 

B2020/K 0.734 0.532 0.922 B2020/K 0.752 0.546 0.931 

B2020/BMSY 1.836 1.330 2.306 B2020/BMSY 1.834 1.330 2.271 

F2020/FMSY 0.257 0.143 0.440 F2020/FMSY 0.253 0.145 0.427 

S03 S04 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K 121,544 79,093 194,144 K 188,042 140,788 269,550 

r 1.054 0.651 1.654 r 0.506 0.384 0.662 

ψ(psi) 0.940 0.815 0.991 ψ(psi) 0.940 0.817 0.991 

σproc 0.098 0.054 0.162 σproc 0.106 0.061 0.169 

FMSY 0.799 0.493 1.253 FMSY 0.474 0.360 0.620 

BMSY 51,043 33,216 81,532 BMSY 71,464 53,506 102,441 

MSY 40,152 30,630 61,185 MSY 33,621 27,008 47,088 

B1952/K 0.932 0.730 1.166 B1952/K 0.931 0.722 1.162 

B2020/K 0.769 0.566 0.943 B2020/K 0.641 0.438 0.847 

B2020/BMSY 1.832 1.347 2.245 B2020/BMSY 1.687 1.153 2.229 

F2020/FMSY 0.246 0.142 0.417 F2020/FMSY 0.319 0.185 0.556 

S05 S06 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K 172,595 122,341 261,704 K 155,467 107,402 238,505 

r 0.575 0.408 0.800 r 0.651 0.447 0.936 

ψ(psi) 0.939 0.815 0.990 ψ(psi) 0.939 0.819 0.991 

σproc 0.104 0.059 0.167 σproc 0.105 0.059 0.167 

FMSY 0.568 0.403 0.790 FMSY 0.680 0.467 0.977 

BMSY 63,873 45,275 96,850 BMSY 55,971 38,667 85,865 

MSY 36,040 28,110 51,995 MSY 37,617 29,019 55,466 

B1952/K 0.929 0.724 1.171 B1952/K 0.931 0.721 1.169 

B2020/K 0.673 0.463 0.871 B2020/K 0.689 0.477 0.885 

B2020/BMSY 1.819 1.252 2.353 B2020/BMSY 1.914 1.324 2.458 

F2020/FMSY 0.276 0.161 0.496 F2020/FMSY 0.251 0.143 0.453 

Continues on the next page… 
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Table 3. Continued from the previous page. 

S07 S08 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 
Estimates Median 

LCI 

(2.50%) 

UCI 

(97.50%) 

K 208,597 156,839 303,053 K 185,436 134,087 270,092 

r 0.443 0.339 0.581 r 0.500 0.362 0.682 

ψ(psi) 0.939 0.814 0.991 ψ(psi) 0.939 0.817 0.991 

σproc 0.106 0.062 0.168 σproc 0.107 0.062 0.171 

FMSY 0.414 0.317 0.544 FMSY 0.522 0.378 0.712 

BMSY 79,276 59,606 115,174 BMSY 66,760 48,273 97,237 

MSY 32,716 26,300 45,689 MSY 34,376 27,248 49,174 

B1952/K 0.927 0.720 1.163 B1952/K 0.931 0.719 1.172 

B2020/K 0.628 0.432 0.833 B2020/K 0.637 0.433 0.847 

B2020/BMSY 1.651 1.136 2.192 B2020/BMSY 1.770 1.203 2.354 

F2020/FMSY 0.335 0.195 0.576 F2020/FMSY 0.296 0.169 0.527 

S09 

Estimates Median 
LCI 

(2.50%) 

UCI 

(97.50%) 

K 172,008 119,107 263,847 

r 0.561 0.386 0.806 

ψ(psi) 0.940 0.814 0.990 

σproc 0.104 0.059 0.167 

FMSY 0.618 0.426 0.888 

BMSY 60,216 41,697 92,367 

MSY 36,731 28,686 54,241 

B1952/K 0.930 0.728 1.167 

B2020/K 0.668 0.465 0.871 

B2020/BMSY 1.909 1.327 2.489 

F2020/FMSY 0.259 0.145 0.455 
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Table 4. Summary Mohn’s rho statistic computed for a retrospective evaluation period of eight years for the S05 

scenario. The more the values diverge from zero, the stronger is the retrospective bias. Values falling between -

0.15 and 0.2 are widely deemed as acceptable retrospective bias (Huerto et al., 2014). 

Scenario 

Stock Quantity 

B F B/BMSY F/FMSY B/K MSY 

S05 -0.1374 0.1661 -0.0685 0.1439 -0.0025 -0.0559 
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Figure 1. Catch time series in metric tons (t) between 1952 and 2020 for West Atlantic skipjack tuna. 
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Figure 2. Time series of observed (circle) with error 95% Cis (error bars) and predicted (solid line) CPUE of West 

Atlantic skipjack tuna for the Bayesian state-space surplus production model JABBA for each scenario fitted. 

Dark shaded blue areas show 95% credibility intervals of the expected mean CPUE and light shaded blue areas 

denote the 95% posterior predictive distribution intervals. 
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Figure 3. Runs tests to quantitatively evaluate the randomness of the time series of CPUE residuals for each 

scenario fitted for the West Atlantic skipjack tuna. Green panels indicate no evidence of lack of randomness of 

time-series residuals (p>0.05) while red panels indicate the opposite. The inner shaded area shows three standard 

errors from the overall mean and red circles identify a specific year with residuals greater than this threshold value 

(3x sigma rule). 
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Figure 4. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario fitted 

for the West Atlantic skipjack tuna. Solid black lines indicate a loess smoother through all residuals. 
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Figure 5. JABBA residual diagnostic plots for alternative sets of CPUE indices examined for each scenario fitted 

for the West Atlantic skipack tuna. Process error deviates (median: solid line) with shaded blue area indicating 

95% credibility intervals. 
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S01 S02 

S03 S04 

Continues on the next page… 
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S05 S06 

S07 S08 

Continues on the next page… 
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S09 

Figure 6. Prior and posterior distributions of various models and management parameters for the Bayesian state-

space surplus production fitted for the West Atlantic skipjack tuna. PPRM: Posterior to Prior Ratio of Medians; 

PPRV: Posterior to Prior Ratio of Variances. 
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Figure 7. Trends in biomass relative to BMSY (B/BMSY) for each scenario from the Bayesian state-space surplus 

production JABBA model fits to West Atlantic skipjack tuna. 
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Figure 8. Trends in biomass relative to FMSY (F/FMSY) for each scenario from the Bayesian state-space surplus 

production JABBA model fits to West Atlantic skipjack tuna. 
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Figure 9. Trends in biomass relative to B0 (B/B0) for each scenario from the Bayesian state-space surplus 

production JABBA model fits to West Atlantic skipjack tuna. 
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Figure 10. Retrospective analysis conducted for scenario S05 for West Atlantic skipjack tuna, by removing one 

year at a time sequentially (n=8) and predicting the trends in biomass and fishing mortality (upper panels), biomass 

relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) and process deviations 

and surplus production curve (bottom panels) from the Bayesian state-space surplus production model fits. 
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Figure 11. Hindcasting cross-validation results (HCxval) for the two scenarios S05 for West Atlantic skipjack 

tuna, showing one-year-ahead forecasts of CPUE values (2011-2019), performed with eight hindcast model runs 

relative to the expected CPUE. The CPUE observations, used for cross-validation, are highlighted as color-coded 

solid circles with associated light-grey shaded 95% confidence interval. The model reference year refers to the 

end points of each one-year-ahead forecast and the corresponding observation (i.e. year of peel + 1). 
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Figure 12. Sensitivity analysis performed for scenarios S05 showing the trends in biomass and fishing mortality 

(upper panels), biomass relative to BMSY (B/BMSY) and fishing mortality relative to FMSY (F/FMSY) (middle panels) 

and biomass relative to K (B/K) and surplus production curve (bottom panels) for the West Atlantic skipjack tuna. 
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Figure 13. Kobe phase plot showing estimated trajectories (1952-2020) of B/BMSY and F/FMSY for the Bayesian 

state-space surplus production model for the West Atlantic skipjack tuna. Different grey shaded areas denote the 

50%, 80%, and 95% credibility interval for the terminal assessment year. The probability of terminal year points 

falling within each quadrant is indicated in the figure legend. 
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