Teratological records in blue shark *Prionace glauca* embryos from the South-western Atlantic Ocean

Mariano Cabanillas-Torpoco1,2,3,4, Felippe Abbatepaulo1, Lucas Rodrigues1,2, Raquel Marquez1,2, Maria Cristina Oddone5 and Luís Gustavo Cardoso1,2

1Laboratório de Recursos Pesqueiros Demersais e Cefalópodes, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, RS, 96203-000, Brasil; 2Programa de Pós-graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande – FURG, RS, 96203-000, Brasil; 3Planeta Oceano, Lima, 15074, Perú; 4MigraMar, 9255 Sir Francis Drake Boulevard Olema, CA 94950, USA and 5Laboratório de Pesquisa em Chondrichthyes, Setor de Morfologia, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande – FURG, RS, 96203-000, Brasil

Abstract

Abnormal embryonic development may result from mutations caused by genetics, environmental conditions or viruses. This study reports cases of cyclopia and a mouth malformation in two embryonic blue shark *Prionace glauca* collected off southern Brazil (South-western Atlantic). Such malformations are likely to reduce the chances of survival of embryos and neonates.

Introduction

Within the last two decades, reports of abnormalities in elasmobranch embryos have increased worldwide, and a wide variety of abnormal morphological conditions have been described. The reports come from a range of seas and oceans, including the Atlantic Ocean (Clark, 2002; Coelho & Erzini, 2006; Mancini et al., 2006; Delpiani et al., 2011; Zaera & Johnsen, 2011; Wagner et al., 2013; Dos Santos & Gadig, 2014; Afonso et al., 2016; Lamarca et al., 2017; Ramirez-Amaro et al., 2019; Prado et al., 2020), Pacific Ocean (Goto et al., 1981; Clark, 2002; Bejarano-Alvarez et al., 2011; Galván-Magaña et al., 2011; Hevia-Hormazábal et al., 2011; Bejarano-Alvarez & Galván-Magaña, 2013; Muñoz-Osorio, et al., 2013; Escobar-Sanchez et al., 2014; Bercerril-García et al., 2017; Pastén-Marambio et al., 2018; Rodriguez-Romero et al., 2019), Mediterranean Sea (Saïdi et al., 2006; Bottaro et al., 2008; Sans-Coma et al., 2016), Caribbean (Ehemann et al., 2016) and Indian Ocean (Moore, 2015).

The most frequently reported abnormalities are related to the anterior body region, such as: diencephaly (Galván-Magaña et al., 2011; Rodríguez-Romero et al., 2019), cyclopia (Bejarano-Alvarez & Galván-Magaña, 2013; Ramirez-Amaro et al., 2019) and duplicate or absent structures (e.g. two mouths, Mancini et al., 2006; missing Gill slits, Saïdi et al., 2006). Furthermore, trunk abnormalities (e.g. spinal anomalies, Parenzan, 1979; Lamarca et al., 2017; Kanagasukku et al., 2020) and albinism (Escobar-Sánchez et al., 2014; Bercerril-García et al., 2017) have also been reported.

Blue shark *Prionace glauca* (Linnaeus, 1758) is the most abundant oceanic shark and represents an important fishery resource (Clarke et al., 2014; Gilman et al., 2016), especially in Brazil (Barreto et al., 2017). This highlights the need of reporting abnormalities in an effort to elucidate the frequency of events of this nature. Additionally, the wide distribution and life-history characteristics of *P. glauca*, which includes placentalotrophy, a gestation period of 9–12 months, litter size of 4–63 individuals (exceptionally up to 135 embryos) (Balon, 1975; Compagno, 1984; Dulvy & Reynolds, 1997; Compagno & Niem, 1998) and size at birth (35–44 cm total length; Compagno, 1984), makes *P. glauca* an important model organism to improve our knowledge about the causes and morphological consequences of embryonic abnormalities in viviparous elasmobranchs. This paper reports two different cases of abnormal development in *P. glauca* embryos, both collected from Southern Brazilian waters.

Methods

Two pregnant blue shark females were caught off the coast of Rio Grande do Sul, Brazil during commercial surface longline activities. The first specimen was caught on 7 September 2018 (32°50'S 50°05'W) by the fishing vessel ‘Sambaqui III’, and the abnormal embryo (embryo A) was extracted from the uterus during attempts to release the pups alive. The second specimen was caught on 16 November 2019 (35°27'S 49°04'W) by the fishing vessel ‘Áustria’. This individual (197 cm fork length) was examined by a scientific observer and one embryo in a litter of 27 pups displayed abnormal development (embryo B). Both embryos were transferred to the Demersal Resources and Cephalopods Laboratory of Oceanography Institute of Federal University of Rio Grande (FURG).
The abnormalities of both embryos were described based on a morphological perspective. Subsequently, the embryos were fixed in formaldehyde and deposited in the collection of the FURG.

Results

Embryo A (voucher specimen code CC00321) showed synophthalmia, a type of cyclopia (Torczynski et al., 1977) and its caudal fin severely coiled anticlockwise (Figure 1A). This specimen showed a malformation in the rostrum by a deficient development of the chondrocranium. Spiracles were present, as well as five gill slits, however, nostrils were absent (Figure 1B). The two-eye-fusion was displaced ventrally, on a large single orbital cavity, possibly related to a malformation in the basitrabecular process. The mouth was normally developed and showed a well-built adductor mandibular complex (i.e. quadratomandibularis and preorbitalis muscles) and intermandibularis muscle (Figure 1C). The posterior region of the body, from the second dorsal fin onward, had coiled in an anticlockwise direction (Figure 1D).

Embryo B (voucher specimen code CC00322) presented an incomplete fusion at the right corner of the mouth that can be viewed ventrally and from a lateral angle. In dorsal view, a slight misalignment in the location of the eyes is observed (Figure 2A), but apart from that, the individual did not present other obvious visual deformations (Figure 2B). The ventral view of the anterior body end of embryo B compared with one of its siblings shows the difference in the position of the eyes of embryo B (Figure 2C). The lack of fusion in the right corner of the mouth (Figure 2D) suggests a lack of fusion in this region between the Meckel’s cartilage and the palatoquadrate, that in turn generated a malformation in the right dorsal and ventral quadratomandibularis muscles and a displacement in the structures of the chondrocranium, causing misalignment in the orbits.

Discussion

According to the classification of morphological anomalies by Hennekam et al. (2013), embryo A presents a major morphology anomaly because it has significant consequences on its health and appearance at the time of evaluation, whilst embryo B has a minor morphological anomaly since there is a low impact on appearance with minimal health consequences.

Even though embryonic development was still in progress, the survival chance after birth would likely be small due to swimming disabilities for embryo A and feeding difficulties for both specimens.

Fig. 1. *Prionace glauca* embryo A: (A) dorsal view exhibiting the trunk and chondrocranium malformations, (B) lateral view showing spiracles and gill slits, (C) ventral view displaying the synphthalmic eye and the mouth, and (D) rolled ‘anticlockwise’ body posterior part.

Fig. 2. *Prionace glauca* embryo B: (A) dorsal view (upper: embryo B; lower: sibling), (B) lateral diagonal view displaying the malformation in the mouth (upper: embryo B; lower: sibling), (C) ventral view comparing with its sibling (left: sibling; right: embryo B), and (D) zoom to the malformed mouth.
Abnormalities related to cyclopia have been reported before for embryos of other elasmobranch species such as *Carcharhinus obscurus* (Bejarano-Álvarez & Galván Magaña, 2013), *Galeorhinus galeus* (Ramírez-Amaro et al., 2019) and *Squatina californica* (synophthalmia; Escobar-Sánchez et al., 2014), while specific mouth malformations have not been reported for elasmobranchs.

As shown in Table 1, malformations in *P. glauca* embryos have been widely reported in different marine regions. However, similar reports in the South Atlantic Ocean are less frequent in comparison with the North Atlantic Ocean. In both the Atlantic and Pacific Oceans, the most commonly reported malformations for this species at this stage of development are diprosopia (usually two heads) and twisted vertebral columns (Mancini et al., 2006; Bejarano-Álvarez et al., 2011; Galván-Magaña et al., 2011; Hevia-Ormaazabal et al., 2016; Lamarca et al., 2019; Pastén-Marambio et al., 2018). Abnormalities such as spinal malformations could be caused by arthritis, injuries, parasites, poor nutrition or tumours (Sadowsky, 1971; Schwartz, 1973; Heupel et al., 1999). Theoretically, if population declines resulted in higher levels of inbreeding, this might also increase the likelihood of malformations in embryonic development (Duby et al., 2014; Lamarca et al., 2017).

The number of developmental abnormalities reported in sharks has increased over time, although it is uncertain as to whether this relates to anthropogenic impacts or simply an increase in sampling and reporting. More standardized sampling and reporting of embryos would be required to inform on this. Despite the difficulty in making assumptions about possible causes for embryonic abnormalities, reporting of morphological abnormalities needs to be encouraged because it will allow us to better understand their causes, if there are species with a greater predisposition to these malformations, or even to understand the juvenile survival rate, which is an essential parameter for stock assessment.

Table 1. Morphological abnormalities reported in *Prionace glauca* embryos worldwide

<table>
<thead>
<tr>
<th>Year</th>
<th>Region</th>
<th>Abnormality</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1963</td>
<td>Mediterranean Sea</td>
<td>Two heads, deformed spine</td>
<td>Parenzan (1979)</td>
</tr>
<tr>
<td>1990s</td>
<td>Caribbean Sea</td>
<td>Two heads</td>
<td>Ehemann et al. (2016)</td>
</tr>
<tr>
<td>1995</td>
<td>South-east Pacific Ocean</td>
<td>Peru, two mouths, four eyes, thoracic lordosis, twisted spine</td>
<td>Kanagusuku et al. (2020)</td>
</tr>
<tr>
<td>1997</td>
<td>North Atlantic Ocean</td>
<td>Two heads</td>
<td>Galván-Magaña et al. (2011)</td>
</tr>
<tr>
<td>1998</td>
<td>South Pacific Ocean</td>
<td>Two heads, thoracic lordosis, twisted spine</td>
<td>Hevia-Ormaazabal et al. (2011)</td>
</tr>
<tr>
<td>2000–2001</td>
<td>South-east Pacific Ocean</td>
<td>Chile, four eyes, deformed snout, thoracic lordosis, twisted spine</td>
<td>Pastén-Marambio et al. (2018)</td>
</tr>
<tr>
<td>2003</td>
<td>South-western Atlantic Ocean</td>
<td>California Gulf, two mouths, twisted spine</td>
<td>Mancini et al. (2006)</td>
</tr>
<tr>
<td>2004</td>
<td>California Gulf</td>
<td>Two heads</td>
<td>Galván-Magaña et al. (2011)</td>
</tr>
<tr>
<td>2004</td>
<td>California Gulf</td>
<td>Smaller than siblings</td>
<td>Galván-Magaña et al. (2011)</td>
</tr>
<tr>
<td>2007</td>
<td>South-western Atlantic Ocean</td>
<td>Brazil, two heads, deformed spine</td>
<td>Lamarca et al. (2017)</td>
</tr>
<tr>
<td>2008</td>
<td>Pacific Ocean</td>
<td>Two heads, smaller than siblings</td>
<td>Bejarano-Álvarez et al. (2011)</td>
</tr>
<tr>
<td>2008</td>
<td>Pacific Ocean</td>
<td>No eyes, deformed snout, gills not fully open, smaller than siblings</td>
<td>Bejarano-Álvarez et al. (2011)</td>
</tr>
<tr>
<td>2008</td>
<td>Pacific Ocean</td>
<td>No eyes, deformed snout, smaller than siblings</td>
<td>Bejarano-Álvarez et al. (2011)</td>
</tr>
<tr>
<td>2012</td>
<td>Pacific Ocean</td>
<td>Deformed snout, only one nostril, twisted caudal fin</td>
<td>Rodríguez-Romero et al. (2019)</td>
</tr>
<tr>
<td>2012</td>
<td>Pacific Ocean</td>
<td>Deformed snout, only one nostril</td>
<td>Rodríguez-Romero et al. (2019)</td>
</tr>
<tr>
<td>2012</td>
<td>Pacific Ocean</td>
<td>Two mouths, twisted spine</td>
<td>Rodríguez-Romero et al. (2019)</td>
</tr>
<tr>
<td>2013</td>
<td>Pacific Ocean</td>
<td>Two heads</td>
<td>Rodríguez-Romero et al. (2019)</td>
</tr>
<tr>
<td>2013</td>
<td>Pacific Ocean</td>
<td>Hypoplasia, two less gill slits per side, deformed snout</td>
<td>Rodríguez-Romero et al. (2019)</td>
</tr>
<tr>
<td>2018</td>
<td>South-western Atlantic Ocean</td>
<td>Brazil, cyclopia, twisted caudal fin, deformed rostrum</td>
<td>Rodríguez-Romero et al. (2019)</td>
</tr>
<tr>
<td>2019</td>
<td>South-western Atlantic Ocean</td>
<td>Brazil, deformed mouth</td>
<td>This study</td>
</tr>
</tbody>
</table>

Abnormalities such as spinal malformations could be caused by arthritis, injuries, parasites, poor nutrition or tumours (Sadowsky, 1971; Schwartz, 1973; Heupel et al., 1999). Theoretically, if population declines resulted in higher levels of inbreeding, this might also increase the likelihood of malformations in embryonic development (Duby et al., 2014; Lamarca et al., 2017). The number of developmental abnormalities reported in sharks has increased over time, although it is uncertain as to whether this relates to anthropogenic impacts or simply an increase in sampling and reporting. More standardized sampling and reporting of embryos would be required to inform on this. Despite the difficulty in making assumptions about possible causes for embryonic abnormalities, reporting of morphological abnormalities needs to be encouraged because it will allow us to better understand their causes, if there are species with a greater predisposition to these malformations, or even to understand the juvenile survival rate, which is an essential parameter for stock assessment.

Acknowledgements. We thank the *Projeto Tubarão Azul* research project for making it possible to collect individuals. We also thank the crew members and skippers of the fishing boats ‘Sambuqui Ill’ and ‘Austria’ for their support in the field activities. Finally, we thank Dr Jim Ellis and the anonymous reviewers for improvements in final version of manuscript.

Financial support. We are grateful to the Organization of American States (OAS) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), which provided scholarships for MCT. We also thank IdeaWild for providing computer equipment to MCT.
References

of a two-headed embryo of Galeus atlanticus and review of the literature.
Journal of Fish Biology **90**, 283–293.

