ASSESSMENT OF THE EASTERN ATLANTIC SAILFISH STOCK USING JABBA MODEL

B. Mourato1, R. Sant’Ana2, E. Kikuchi3, L. Gustavo Cardoso1, F. Ngom4, F. Arocha5, A. Kimoto6, M. Ortiz6

SUMMARY

We first attempted to apply the JABBA Models for the eastern Atlantic sailfish (Istiophorus platypterus) with the best available data through 2021. Results suggest reasonably robust fits to the data as judged by the presented model diagnostic results. The resulting stock status for 2021 was generally consistent and predicted with high probabilities that current fishing levels are sufficiently low to preclude overfishing ($F_{2021} < F_{MSY}$), whereas biomass is above the sustainable levels that can produce MSY ($B_{2021} > B_{MSY}$). As such, our models conclusively estimate that stock is not overfished and no subject to overfishing, with probability ranging from 86.4% - 95.5% for the green quadrant of Kobe. Similarly, it was not observed substantial differences in biomass and fishing mortality yearly trends among models, with the S2 model indicating a slightly more productive stock.

RÉSUMÉ

Nous avons d'abord tenté d'appliquer les modèles JABBA pour les voiliers de l'Atlantique Est (Istiophorus platypterus) avec les meilleures données disponibles jusqu'en 2021. Les résultats suggèrent des ajustements raisonnablement robustes aux données, comme en témoignent les résultats de diagnostic du modèle présentés. L'état du stock obtenu pour 2021 était généralement cohérent et prédisait avec des probabilités élevées que les niveaux de pêche actuels sont suffisamment faibles pour empêcher la surpêche ($F_{2021} < F_{PMS}$), tandis que la biomasse se situe au-dessus des niveaux durables qui peuvent produire la PME ($B_{2021} > B_{PMS}$). Ainsi, nos modèles estiment de manière concluante que le stock n’est pas surpêché ni victime de surpêche, avec une probabilité allant de 86,4% à 95,5% de se situer dans le quadrant vert de Kobe. De même, aucune différence substantielle n’a été observée dans les tendances annuelles de la biomasse et de la mortalité par pêche entre les modèles, le modèle S2 indiquant un stock légèrement plus productif.

RESUMEN

Primero intentamos aplicar el modelo JABBA para el pez vela (Istiophorus platypterus) del Atlántico oriental con los mejores datos disponibles hasta 2021. Los resultados sugieren un ajuste razonablemente robusto a los datos, según los resultados de diagnóstico del modelo presentados. El estado del stock resultante para 2021 fue generalmente coherente y predijo con altas probabilidades que los niveles de pesca actuales son lo suficientemente bajos como para impedir la sobrepesca ($F_{2021} < F_{RMS}$), mientras que la biomasa permanece por debajo de los niveles sostenibles que pueden producir el RMS ($B_{2021} > B_{RMS}$). Así, nuestros modelos estiman de forma concluyente que el stock no está sobrepesado y que no se está produciendo sobrepesca, con una probabilidad que oscila entre el 86.4% y el 95.5% de situar al stock en el cuadrante verde del diagrama de Kobe. Del mismo modo, no se observaron diferencias sustanciales en las tendencias anuales de la biomasa y la mortalidad por pesca entre los modelos, indicando el modelo S2 un stock ligeramente más productivo.
1. Introduction

Sailfish (*Istiophorus platypterus*) is an epipelagic species with a pan-tropical distribution (Ferrete et al., 2021; Ferrete et al., 2023). It is the least oceanic of the Atlantic billfishes, it shows a strong tendency to approach continental coasts, islands and reefs (Nakamura, 1985). Despite the high uncertainty of stock structure for sailfish in the Atlantic Ocean (Mourato et al., 2010; Ferrete et al., 2021; Ferrete et al., 2023), the Standing Committee on Research and Statistics (SCRS) of the International Commission for the Conservation of Atlantic Tunas (ICCAT) has been historically considered the existence of two stocks of sailfish in the Atlantic Ocean: Western Atlantic (WA) and Eastern Atlantic (EA). Historically, the EA sailfish stock has been assessed using surplus production models (SPM), including the ASPIC, BSP2, and catch-only models (ICCAT, 2009; ICCAT, 2016). In contrast, the WA sailfish stock has been assessed using an integrated age-structured model Stock Synthesis, ASPIC, and Bayesian surplus models (ICCAT, 2009; ICCAT, 2016; Mourato and Carvalho, 2017).

The last assessment in 2016 showed that BSP2, ASPIC and the catch-only models produced comparable results for the EA sailfish, with the stock being estimated as overfished, and overfishing was either occurring in 2014 (ICCAT, 2016). However, different model runs indicated a declining or increasing trends in 2014 depending on the CPUE series selected. Also, there was considerable uncertainty, as many SPMs examined had convergence problems, and the maximum likelihood surfaces were flat and not well defined for the ASPIC models. Furthermore, it was also observed evidence for a strong retrospective pattern, especially for the fishing mortality trajectories, which indicated overfishing status highly uncertain (ICCAT, 2016).

While during the 2016 EA sailfish assessment much focus was given to identifying and resolving potential CPUE data conflicts that may arise from fitting of multiple standardized CPUE time series, little attention was given for the biological research, with the available information being characterized to be much more limited than the WA sailfish stock. In biomass aggregated models, such as SPMs, somatic growth, reproduction, natural mortality, and associated density-dependent processes are inseparably captured in the estimated surplus production function. Therefore, structural, and biological uncertainty is typically represented in the form of alternative values of \(r \) and the shape \(m \) of the production function. In the 2016 assessment, a single lognormal \(r \) prior with a mean of 0.45 and CV of 0.30 was assumed for all models. Given the importance of the surplus production function, it was noted that input priors related to the production function should be updated and objectively derived from the simulations in an Age Structured Equilibrium Model (ASEM) (see methodology in Winker et al., 2020).

Here we present stock assessment results for EA sailfish stock based on the Bayesian State-Space Surplus Production Model framework, JABBA (Just Another Bayesian Biomass Assessment; Winker et al., 2018), using updated catch and standardized longline CPUE time series for the period 1957-2021. JABBA is a fully documented, open-source R package (www.github.com/JABBAmodel) that has been formally included in the ICCAT stock catalogue (https://github.com/ICCAT/software/wiki/2.8-JABBA).

2. Material and Methods

2.1 Fishery data

Total catch of EA sailfish from 1957-2021 were obtained from the ICCAT Secretariat and includes reported landings (Figure 1). Indices of relative abundance were made available in the form of standardized catch-per-unit-of-effort (CPUE) time series, which were assumed to be proportional to biomass. For this assessment seven standardized CPUE series were made available: Côte d'Ivoire, Senegal, Ghana, Japan, Spain, Chinese Taipei and Portugal (Figure 2). The Japan and Ghana indices were split into two separate time blocks as agreed in the last stock assessment meeting in 2016 (ICCAT, 2016).

- Côte d'Ivoire artisanal (1988-2007)
- Senegal artisanal (1981-2021)

316
2.2 JABBA stock assessment model fitting procedures

This stock assessment uses the most updated version (v2.2.9) of JABBA and can be found online at: https://github.com/jabbamodel/JABBA. JABBA’s inbuilt options include: (1) automatic fitting of multiple CPUE time series and associated standard errors; (2) estimating or fixing the process variance, (3) optional estimation of additional observation variance for individual or grouped CPUE time series, and (4) specifying a Fox, Schaefer or Pella-Tomlinson production function by setting the inflection point B_{MSY}/K and converting this ratio into shape parameter m.

For the unfished equilibrium biomass K, we used default settings of the JABBA R package in the form of vaguely informative lognormal prior with a large CV of 100% and a central value that corresponds to eight times the maximum total catch and is consistent with other platforms such as Catch-MSY (Martell and Froese, 2013) or SpiCt (Pederson and Berg 2017). Initial depletion was input as a “beta” prior ($\phi = B_{1957}/K$) with mean = 0.99 and CV of 5%. This distribution is considered more appropriate than a lognormal for initial depletion, given the understanding that there was very little fishing before the starting year of 1957. All catchability parameters were formulated as uninformative uniform priors, while additional observation variances were estimated for index by assuming inverse-gamma priors to enable model internal variance weighting. Instead, the process error of $\log(B_y)$ in year y was estimated “freely” by the model using an uninformative inverse-gamma distribution with both scaling parameters setting at 0.001. Observation error for CPUE estimates were fixed at 0.05. For all model runs we used a random catch error uncertainty with CV of 0.01.

Initial trials considered six alternative specifications of the Pella-Tomlinson model type based on different sets of r priors and fixed input values of B_{MSY}/K. The input r priors for these six scenarios were objectively derived from age-structured model simulations (see details in Winker et al. 2020), based on two different maximum ages of 12 and 15 (ICCAT, 2016; Prince et al., 1986) and the growth parameters agreed in the last assessment for the E A sailfish (ICCAT, 2016), and also other updated biological parameters (see Appendix A; Table A1). This allowed us to approximate the parameterizations of an age structured model based on range of stock recruitment steepness values for the stock-recruitment relationship ($h = 0.65$, $h = 0.75$ and $h = 0.85$), while admitting reasonable uncertainty about the natural mortality M (CV of 30% and the central value mean value of 0.35). Based on sensitivity analysis of these six initial runs, including the ‘steepness-specific’ r input priors (Figure A1), no major differences were found on the estimates of the main reference points (Figure A2). In this sense, a r prior with corresponding steepness of $h = 0.75$ and a maximum age of 15 was selected for the subsequent analysis. This translates to an associated lognormal r prior of $\log(r) \sim N(\log(0.257),0.189)$ and a fixed input value of $B_{MSY}/K = 0.34$ (Table A2). The following scenarios were selected as candidate models:

- S1: all CPUE
- S2: all CPUE minus Ghana indices

2.3 Model diagnostics

The evaluation model diagnostics adheres to the recommendations made by Carvalho et al. (2021) who suggested that the candidate models be objectively assessed based on the following four model plausible criteria: (1) model convergence (2) fit to the data, (3) model consistency (retrospective pattern), and (4) prediction skill through hindcast cross-validation (Kell et al. 2016; 2021).

JABBA is implemented in R (R Development Core Team, https://www.r-project.org/) with JAGS interface (Plummer, 2003) to estimate the Bayesian posterior distributions of all quantities of interest by means of a Markov Chains Monte Carlo (MCMC) simulation. In this study, three MCMC chains were used. Each model was run for 30,000 iterations, sampled with a burn-in period of 5,000 for each chain and thinning rate of five iterations. Basic diagnostics of model convergence included visualization of the MCMC chains using MCMC trace-plots as well as Heidelberger and Welch (Heidelberger and Welch, 1992) and Geweke (1992) and Gelman and Rubin (1992) diagnostics as implemented in the coda package (Plummer et al., 2006).
To evaluate the JABBA fit to the abundance index data, the model predicted values were compared to the observed indices. Residual plots were used to examine (1) color-coded lognormal residuals of observed versus predicted CPUE indices by fleet together with (2) boxplots indicating the median and quantiles of all residuals available for any given year; the area of each box indicates the strength of the discrepancy between CPUE series (larger box means higher degree of conflicting information) and (3) a loess smoother through all residuals which highlights systemically auto-correlated residual patterns to evaluate the randomness of model residuals. In addition, it depicts the root-mean-squared-error (RMSE) as a goodness-of-fit statistic. We conducted run tests to evaluate the randomness of residuals (Carvalho et al., 2017). The runs test diagnostic was applied to residuals of the CPUE fit on log-scale using the function runs.test in the R package “tsseries”, considering the 1-sided p-value of the Wald-Wolfowitz runs test (Carvalho et al. 2021).

To check for model consistency with respect to the stock status estimates, we also performed a retrospective analysis by removing one year of data at a time sequentially (n = 5), refitting the model and comparing quantities of interest (i.e., biomass, fishing mortality, B/BMSY, F/FMSY, B/B0 and MSY) to the model that is fitted to full time series. To compare the bias between the models, we computed Mohn’s (Mohn, 1999) rho (ρ) statistic and specifically the commonly used formulation Hurtado-Ferro et al. (2015).

To validate a model’s prediction skill, we applied a hindcasting cross-validation (HCXval) technique (Kell et al. 2016), where observations are compared to their predicted future values. HCXval is a form of cross-validation where, like retrospective analysis, recent data are removed, and the model refitted with the remaining data, but HCXval involves the additional steps of projecting ahead over the missing years and then cross-validating these forecasts against observations to assess the model’s prediction skill. A robust statistic for evaluating prediction skill is the Mean Absolute Scaled Error (MASE), which scales the mean absolute error of prediction residuals to a naïve baseline prediction, where a ‘prediction’ is said to have ‘skill’ if it improves the model forecast when compared to the naïve baseline (Kell et al. 2021). The MASE score scales the mean absolute error of the prediction residuals to the mean absolute error of a naïve in-sample prediction and a score of higher than one can be interpreted such that the average model forecasts are no better than a random walk. Conversely, a MASE score of 0.5 indicates that the model forecasts twice as accurately as a naïve baseline prediction; thus, the model has prediction skill.

3. Results and Discussion

The results of the MCMC convergence tests (Heidelberger and Welch, 1992; Geweke, 1992; Gelman and Rubin, 1992), and the visual examination of trace plots, show that all models have adequate convergence a high level of model stability.

Both models fit to each standardized CPUE indices are depicted in Figures 3 and 4, and appeared to fit CPUE data poorly, with RMSE estimates of 78.3% and 74.6%, respectively (Figure 5). Run tests conducted on the log residuals for scenario S1 indicated that the CPUE residuals may not be randomly distributed for four of the nine indices: Senegal, second block of Ghana and Japan, and Spanish fleets (Figure 3), while for scenario S2 only Senegal and Spanish fleets did not pass in runs test (Figure 4). This residual pattern suggests data-conflicts caused by CPUE indices’ opposite trends, particularly in the last seven years (2015-2021), in which part of the indices shows an increasing trend (distant water longline fleets) while the artisanal fishery from Senegal shows a decreasing pattern in recent years. Indeed, the CPUE data-conflicting situation was also noted in the latest assessment of the EA sailfish stock (ICCAT, 2016), and also for blue and white marlins in the Atlantic Ocean, with high RMSE values (>50%) and poor goodness-of-fit (Mourato et al., 2018; Mourato et al., 2020). Despite the overall decrease in landings since the 2000’s and the positive trends of CPUE for most of the fishing fleets in recent years (expect Senegal), the estimated process error deviates show a negative trend between 2011 and 2015, followed an increasing in the final of the time series in all models (Figure 6). Thus, the model might interpret the stock’s productivity as having been above average in recent years.

Marginal posterior distributions along with prior densities for all two models are shown in Figure 7. The prior to posterior median ratio (PPMR) for r in models S1 and S2 were close to 1, indicating that the posterior is heavily influenced by the prior. This was expected, given the low CVs that were estimated in the development of the priors (Table A2). On the other hand, the resulting small PPVRs observed in S1 and S2 K indicate that the input data was more informative about K, which was expected, since the high CVs were applied in the development of these priors. The marginal posteriors for initial depletion (ϕ) were similar between all models, with both PPMR and PPVR close to 1, which suggests that this parameter was largely informed by the priors.

318
Summaries of posterior quantiles for parameters and management quantities of interest are presented in Table 1. Estimates of MSY were very similar between models S1 and S2 (2,338 and 2,376 t, respectively). The marginal posterior median for B_{MSY} varied between 8,580 metric tons (S1) and 8,801 metric tons (S2). The F_{MSY} median estimate for S1 (0.272) was similar to model S2 (0.269) (Table 1). Similarly, no differences were observed between models S1 and S2 in the trends in biomass and fishing mortality (Figure 8), with the S2 model indicating slightly more productive stock than S1. The trajectory of B/B_{MSY} showed an overall decreasing trend from 1970 to around 2000, thereafter the decreasing trend stabilized somewhat and has fluctuated slightly below of MSY level until 2010, but increasing again up to 2021, with the current estimates varying between 1.358 and 1.581. The F/F_{MSY} trajectory showed a sharp increase in the mid-1980s, followed by a period of stability but oscillating around the MSY level. After 2000, F/F_{MSY} steadily decreased (Figure 8). Current estimates of F/F_{MSY} are well below 1 (range: 0.489 (S1) - 0.412 (S2)).

A retrospective analysis for five years was run for both models and the results presented in Figure 9, which shows minimal retrospective deviations from the full models. Furthermore, Table 2 depicts the Mohn’s rho statistic computed for a retrospective evaluation period of five years. The estimated Mohn’s rho for B and B/B_{MSY} fell within the acceptable range of -0.15 and 0.20 (Hurtado-Ferro et al. 2014; Carvalho et al. 2017) and consequently indicated that the retrospective pattern for both models was negligible. Hindcasting cross-validation results suggest that albeit MASE score for Senegal, Japan and Chinese-Taipei were slightly higher than one, these indices have good prediction skills (Figure 10). Overall, the MASE scores for the S2 scenario presented a slight improvement in relation to the S1 model (Figure 10).

The Jackknife sensitivity analysis of CPUE indices performed on model S1 showed that the first block of Ghana and Spain are highly influential with regards to stock status trajectories and MSY (Figure 11). Removing these indices resulted in much more pessimistic stock status trajectories, with biomass level well above B_{MSY}. This is likely due to the Ghana index being one of the oldest, and the model therefore relies heavily on this index to describe the initial decline due to fishing. Also, removing the Spanish index would result in considerably more pessimistic stock trajectories and produces a scenario whereby the terminal biomass levels fall well below B_{MSY}. This is due to the significant increase in the Spanish CPUE trend since 2000.

Kobe biplots for all three models are shown in Figure 12. A typical anti-clockwise pattern is present, with the stock status moving from underexploited through a period of unsustainable fishing to the overexploited phase and then to the recovery phase after a decrease in fishing mortality. Currently, both models indicate that the stock in the last 10 years has been moving from the “recovery” yellow quadrant into the green quadrant of the Kobe biplot. The resultant stock status posteriors for 2021 from each model have the highest probability falling within the green quadrant (S1 – 86.4% and S2 – 93.5%). Furthermore, the probability that current fishing mortality is sufficiently low enough to facilitate stock rebuilding (yellow + green) is above 99% in each model.

Our results suggest that both models provide reasonably robust fits to the data as judged by the presented model diagnostic results and might be used for management advice. Both models performed very similarly regarding the residual’s diagnostics, with a slight improvement in this regard for the S2. Also, it is essential to note that there is a considerable lack of basic life history information for the EA sailfish, including the growth, length at maturity, and natural mortality, making it even more important to admit uncertainty about the stock’s productivity. Considering new available information on genetics (Ferrete et al., 2021; Ferrete et al., 2023), we also highlight the high uncertainty on the stock structure for sailfish in the Atlantic Ocean. Thus, we strongly recommend that alternative scenarios for stock structure should be considered for future assessments.

The final model was decided by the Billfish Species Group during the sailfish assessment meeting. The final model setup and the results are available in the sailfish assessment meeting report.
References

Table 1. Summary of posterior quantiles presented in the form of marginal posterior medians and associated the 95% credibility intervals of parameters for the Bayesian state-space surplus production models for EA sailfish.

<table>
<thead>
<tr>
<th>Estimates</th>
<th>Median</th>
<th>2.5%</th>
<th>97.5%</th>
<th>Median</th>
<th>2.5%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>25228</td>
<td>18324</td>
<td>36811</td>
<td>25879</td>
<td>18479</td>
<td>38663</td>
</tr>
<tr>
<td>r</td>
<td>0.233</td>
<td>0.170</td>
<td>0.316</td>
<td>0.231</td>
<td>0.168</td>
<td>0.318</td>
</tr>
<tr>
<td>σ_{proc}</td>
<td>0.183</td>
<td>0.135</td>
<td>0.210</td>
<td>0.182</td>
<td>0.131</td>
<td>0.209</td>
</tr>
<tr>
<td>F_{MSY}</td>
<td>0.272</td>
<td>0.199</td>
<td>0.369</td>
<td>0.269</td>
<td>0.195</td>
<td>0.371</td>
</tr>
<tr>
<td>B_{MSY}</td>
<td>8580</td>
<td>6232</td>
<td>12519</td>
<td>8801</td>
<td>6285</td>
<td>13149</td>
</tr>
<tr>
<td>MSY</td>
<td>2338</td>
<td>1953</td>
<td>2852</td>
<td>2376</td>
<td>1977</td>
<td>2939</td>
</tr>
<tr>
<td>B_{1957}/K</td>
<td>0.963</td>
<td>0.684</td>
<td>1.281</td>
<td>0.967</td>
<td>0.683</td>
<td>1.279</td>
</tr>
<tr>
<td>B_{2021}/K</td>
<td>0.462</td>
<td>0.260</td>
<td>0.752</td>
<td>0.538</td>
<td>0.312</td>
<td>0.864</td>
</tr>
<tr>
<td>B_{2021}/B_{MSY}</td>
<td>1.358</td>
<td>0.765</td>
<td>2.212</td>
<td>1.581</td>
<td>0.918</td>
<td>2.540</td>
</tr>
<tr>
<td>F_{2021}/F_{MSY}</td>
<td>0.489</td>
<td>0.289</td>
<td>0.868</td>
<td>0.412</td>
<td>0.243</td>
<td>0.694</td>
</tr>
</tbody>
</table>

Table 2. Summary of models Mohn’s rho statistic computed for a retrospective evaluation period of five years. The larger the threshold the stronger is the retrospective bias.

<table>
<thead>
<tr>
<th>Model</th>
<th>B/F</th>
<th>B/B_{MSY}</th>
<th>F/F_{MSY}</th>
<th>MSY</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-0.043</td>
<td>-0.026</td>
<td>0.042</td>
<td>-0.006</td>
</tr>
<tr>
<td>S2</td>
<td>0.025</td>
<td>-0.024</td>
<td>0.026</td>
<td>-0.006</td>
</tr>
</tbody>
</table>
Figure 1. Available catch times series in metric tons (t) for EA sailfish for the period 1957 - 2021.

Figure 2. Available standardized CPUE series for EA sailfish assessment. Points are the observed value; Lines and grey shaded area represents the results of smoothing regression analysis.
Figure 3: Left panel: Time-series of observed (circle) and predicted (solid line) CPUE of EA sailfish for the JABBA model S1. The Dark shaded grey areas show 95% credibility intervals of the expected mean CPUE, and light shaded grey area denote the 95% posterior predictive distribution intervals. Right panel: Runs tests to evaluate the randomness of the time series of CPUE residuals by fleet for S1. Green panels indicate no evidence of lack of randomness of time-series residuals ($p>0.05$) while red panels indicate possible autocorrelation. The inner shaded area shows three standard errors from the overall mean and red circles identify a specific year with residuals greater than this threshold value (3x sigma rule).
Figure 4: Left panel: Time-series of observed (circle) and predicted (solid line) CPUE of EA sailfish for the JABBA model S2. The Dark shaded grey areas show 95% credibility intervals of the expected mean CPUE, and light shaded grey area denote the 95% posterior predictive distribution intervals. Right panel: Runs tests to evaluate the randomness of the time series of CPUE residuals by fleet for S2. Green panels indicate no evidence of lack of randomness of time-series residuals ($p > 0.05$) while red panels indicate possible autocorrelation. The inner shaded area shows three standard errors from the overall mean and red circles identify a specific year with residuals greater than this threshold value (3x sigma rule).
Figure 5. Residual diagnostic plots of CPUE indices for the EA sailfish models S1 (upper panel) and S2 (bottom panel). Boxplots indicate the median and quantiles of all residuals available for any given year, and solid black lines indicate a loess smoother through all residuals.
Figure 6. Process error deviates (median: solid line) for the EA sailfish models S1 (upper panel) and S2 (bottom panel). Shaded grey area indicates 95% credibility intervals.
Figure 7. Prior and posterior distributions of various model and management parameters for the JABBA model S1 for EA sailfish models S1 (left panels) and S2 (right panels). PPRM: Posterior to Prior Ratio of Means; PPRV: Posterior to Prior Ratio of Variances.
Figure 8. Comparison of biomass, fishing mortality (upper panels), biomass relative to K (B/K) and surplus production curve (middle panels), and biomass relative to B_{MSY} (B/B_{MSY}) and fishing mortality relative to F_{MSY} (F/F_{MSY}) (bottom panels) among JABBA scenarios S1- S2 for EA sailfish.
Figure 9. Retrospective analysis performed to the S1 (left panels) and S2 (right panels) JABBA models for the EA sailfish assessment, by removing one year at a time sequentially (n=5) and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to B_{MSY} (B/B_{MSY}) and fishing mortality relative to F_{MSY} (F/F_{MSY}) (middle panels) and biomass relative to K (B/K) and surplus production curve (bottom panels).
Figure 10. Hindcasting cross-validation results for the JABBA models for the EA sailfish (S1 – upper panels and S2 – lower panels), showing one-year-ahead forecasts of CPUE values (2017-2021), performed with five hindcast model runs relative to the expected CPUE. The CPUE observations, used for cross-validation, are highlighted as color-coded solid circles with associated light-grey shaded 95% confidence interval. The model reference year refers to the end points of each one-year-ahead forecast and the corresponding observation (i.e. year of peel + 1).
Figure 11. Jackknife index analysis performed to the S1 JABBA model of the EA sailfish assessment, by removing one CPUE fleet at a time and predicting the trends in biomass and fishing mortality (upper panels), biomass relative to BMSY (B/B_{MSY}) and fishing mortality relative to FMSY (F/F_{MSY}) (middle panels) and biomass relative to K (B/K) and surplus production curve (bottom panels)
Figure 12. Kobe phase plot showing estimated trajectories (1957-2021) of B/B_{MSY} and F/F_{MSY} for the EA sailfish assessment (S1 – upper panels and S2 – lower panels). Different grey shaded areas denote the 50%, 80%, and 95% credibility interval for the terminal assessment year. The probability of terminal year points falling within each quadrant is indicated in the figure legend.
Appendix A

Table A1. Life history parameters used to estimate r prior distributions and median shape parameter with corresponding B_{MSY}/K values of the EA sailfish assessment. The priors are generated using an Age-Structured Equilibrium Model (ASEM).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>CV</th>
<th>Distribution</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.35</td>
<td>0.2</td>
<td>Lognormal</td>
<td>Natural Mortality (1/year)</td>
<td>ICCAT (2016)</td>
</tr>
<tr>
<td>$L_{50} (\text{cm})$</td>
<td>206.8</td>
<td>0.1</td>
<td>Lognormal</td>
<td>Von Bertalanffy asymptotic length</td>
<td>ICCAT (2016)</td>
</tr>
<tr>
<td>K</td>
<td>0.36</td>
<td>0.1</td>
<td>Normal</td>
<td>Von Bertalanffy growth parameter</td>
<td>ICCAT (2016)</td>
</tr>
<tr>
<td>t_0</td>
<td>-0.24</td>
<td>0.2</td>
<td>Normal</td>
<td>Von Bertalanffy age at zero length</td>
<td>ICCAT (2016)</td>
</tr>
<tr>
<td>a</td>
<td>0.00000114</td>
<td>-</td>
<td>Exponential</td>
<td>Weight at length parameter (GG-LJFL)</td>
<td>ICCAT (2016)</td>
</tr>
<tr>
<td>b</td>
<td>3.26</td>
<td>-</td>
<td>Exponential</td>
<td>Weight at length parameter (GG-LJFL)</td>
<td>ICCAT (2016)</td>
</tr>
<tr>
<td>$L_{50} (\text{cm})$</td>
<td>146.12</td>
<td>0.2</td>
<td>Lognormal</td>
<td>Length at 50% maturity</td>
<td>Mourato et al. (2018)</td>
</tr>
<tr>
<td>$D_{L50} \times 0.05$</td>
<td>-</td>
<td>0.2</td>
<td>Lognormal</td>
<td>Logistic maturity ogive</td>
<td>Knife-edge</td>
</tr>
<tr>
<td>$t_{\text{max}} (\text{y})$</td>
<td>12 and 15</td>
<td>0.2</td>
<td>Lognormal</td>
<td>Longevity</td>
<td>ICCAT (2016) and Prince et al (20XX)</td>
</tr>
<tr>
<td>$L_c (\text{cm})$</td>
<td>119</td>
<td>fixed</td>
<td>Fixed</td>
<td>Length at 50% selectivity</td>
<td>25th percentile LF</td>
</tr>
<tr>
<td>h</td>
<td>0.65, 0.75, and 0.85</td>
<td>fixed</td>
<td>Range</td>
<td>Steepness</td>
<td>-</td>
</tr>
</tbody>
</table>

Table A2 – Results for r prior distributions and median shape parameter with corresponding B_{MSY}/K values generated an Age-Structured Equilibrium Model (ASEM).

<table>
<thead>
<tr>
<th>steepness</th>
<th>maximum age</th>
<th>mean r</th>
<th>sd of log (r)</th>
<th>B_{MSY}/K</th>
<th>shape m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>12</td>
<td>0.257</td>
<td>0.115</td>
<td>0.37</td>
<td>1.01</td>
</tr>
<tr>
<td>0.75</td>
<td>12</td>
<td>0.277</td>
<td>0.16</td>
<td>0.35</td>
<td>0.92</td>
</tr>
<tr>
<td>0.85</td>
<td>12</td>
<td>0.31</td>
<td>0.216</td>
<td>0.35</td>
<td>0.95</td>
</tr>
<tr>
<td>0.65</td>
<td>15</td>
<td>0.237</td>
<td>0.146</td>
<td>0.36</td>
<td>0.97</td>
</tr>
<tr>
<td>0.75</td>
<td>15</td>
<td>0.257</td>
<td>0.189</td>
<td>0.34</td>
<td>0.87</td>
</tr>
<tr>
<td>0.85</td>
<td>15</td>
<td>0.286</td>
<td>0.247</td>
<td>0.34</td>
<td>0.89</td>
</tr>
</tbody>
</table>
Figure A1. (Top Panel) Showing the functional form of the yield curves produced from the Age-Structured Equilibrium Model (ASEM; solid line) and the JABBA formulation of the Surplus Production function (solid) as a function of \(\frac{EB}{EB_0} \) for a range of fixed steepness values of the spawning recruitment relationship (\(h = 0.65, h = 0.75, h = 0.85 \)) (top panel); (Middle Panel) density distributions of simulated \(r \) values from Monte-Carlo simulations; and (Lower Panel) boxplot generated inflection points of \(\frac{EB_{MSY}}{EB_0} \) for each of the fixed steepness \(h \) input values.
Figure A2. Comparison of biomass, fishing mortality (upper panels), biomass relative to K (B/K) and surplus production curve (middle panels), and biomass relative to B_{MSY} (B/B_{MSY}) and fishing mortality relative to F_{MSY} (F/F_{MSY}) (bottom panels) among six r prior JABBA for EA sailfish.